Consider the following transfer function \[G(s)H(s) = \frac{s}{s^2+2s+2} = \frac{s}{(s+1+j)(s+1-j)}.\]
\[N = Z - P\Rightarrow Z = N+P.\]
\[\frac{G(s)}{1+G(s)H(s)}\]
\[Z = N+P\]
\[ G(s)H(s) = \frac{s}{s^2+2s+2}.\]
Nyquist Contour consists of 3 segments:
\[G(s)H(s) = \begin{cases}\frac{s}{s^2+2s+2}&\text{strictly proper}\\\frac{s-1}{s+1}&\text{proper}\\s&\text{non-proper}\end{cases}\]
\[\lim_{s\rightarrow\infty}\frac{s}{s^2+2s+2} = \lim_{s\rightarrow\infty}\frac{s}{s^2} = 0\]
\[\lim_{s\rightarrow\infty}\frac{s-1}{s+1} = \lim_{s\rightarrow\infty}\frac{s}{s} = 1\]
\[G(s) = \overline{G(-s)}.\]
Consider the system with open-loop transfer function: \[G(s)H(s) = \frac{1}{(s+1)(0.1s+1)}.\] Determine the stability of the closed-loop system using the Nyquist stability criterion.
Consider a feedback system with open-loop transfer function \[G(s)H(s) = \frac{K(s-1)}{s^2+s+4},\,K>0\] Determine the range of \(K\) such that the feedback system is stable.
Assume \(K=1\) first.
Consider the two loops feedback system:
Determine the range of gain \(K\) for stability of the system using Nyquist stability criterion.
\[G_2(s) = \frac{1/(s^3+s^2)}{1+1/(s^3+s^2)} = \frac{1}{s^3+s^2+1}.\]
$$ G(s) = \frac{K(s+0.5)}{s^3+s^2+1}.$$
Consider a feedback system with open-loop transfer function \[G(s)H(s) = \frac{K}{(s-1)(s+2)},\,K>0\] Determine the range of \(K\) such that the feedback system is stable.