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Privacy Preserving Average Consensus

Yilin Mo, Member, IEEE, Richard M. Murray, Fellow, IEEE

Abstract

Average consensus is a widely used algorithm for distributed computing and control, where all the

agents in the network constantly communicate and update their states in order to achieve an agreement.

This approach could result in an undesirable disclosure of information on the initial state of an agent

to the other agents. In this paper, we propose a privacy preserving average consensus algorithm to

guarantee the privacy of the initial state and asymptotic consensus on the exact average of the initial

values, by adding and subtracting random noises to the consensus process. We characterize the mean

square convergence rate of our consensus algorithm and derive the covariance matrix of the maximum

likelihood estimate on the initial state. Moreover, we prove that our proposed algorithm is optimal in the

sense that it does not disclose any information more than necessary to achieve the average consensus.

A numerical example is provided to illustrate the effectiveness of the proposed design.

Index Terms

Privacy, Multi-agent systems, Networked control systems, Estimation

I. INTRODUCTION

Consensus has been an active research area over the past decades. Early researches use

consensus to model and analyze phenomena such as agreement of opinions by a group of

individuals [1] and decision making by decentralized processors [2]. Applications of distributed

averaging algorithms include dynamic load balancing [3], coordination of groups of mobile

autonomous agents [4] and cooperative control of vehicle formations [5]. A survey of theory
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and applications of consensus problems in networked systems can be found in [6]. Consensus

problems in the context of distributed signal processing applications, such as distributed param-

eter estimation, source localization and distributed compression have been reviewed in [7].

One commonly adopted consensus scheme is the deterministic average consensus algorithm,

where each agent communicates with a fixed set of neighbors and follows a time-invariant update

algorithm to reach the average of their initial values. In this approach, if one agent knows the

update rules of all the other agents, then under some observability conditions, it can infer the

state of all the other agent. This may turn out to be desirable for some applications, such as

malicious intrusion detection and identification [8] and finite-step consensus [9], [10]. However,

it also implies that the exact initial value of one agent may be computable by the other agents,

which results in a disclosure of information. For privacy concerns, the participating agents may

not want to release more information on its initial value than strictly necessary to reach the

average consensus. For example, in social networks, a group of individuals can employ consensus

algorithm to compute the common opinion on a subject [1]. However, they may not want to

reveal their exact personal opinion on the subject. Another example is the multi-agent rendezvous

problem [11], where a group of agents want to eventually rendezvous at a certain location. In

this application, the participating agents may want to keep their initial location secret to the

others.

In the database literature, the concept of differential privacy [12] has been extensively studied

in the recent years. A widely adopted differentially private mechanism is to return a randomized

answer to any database query to guarantee that the data from any individual participant of the

database will only marginally change the distribution of the randomized answer [13]. Recently,

the concept of differential privacy has been applied in dynamical systems. In [14], the authors

consider the design of differentially private filters for dynamical system by adding white Gaussian

perturbations to the system. In the context of consensus problem, Huang et al. [15] propose a

differentially private consensus algorithm, where an independent and exponentially decaying

Laplacian noise process is added to the consensus computation. However, their consensus algo-

rithm does not converge to the exact average of the initial value, but to a randomized value. As

a result, it cannot be applied to the case where the exact average consensus is required. Manitara

and Hadjicostis [16] propose a privacy preserving average consensus scheme by adding correlated

noise and discuss whether the initial state of one agent can be perfectly inferred by the other
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“malicious” agents. However, they do not provide a quantitative result on how good the initial

state can be estimated. Moreover, they can only provide a sufficient condition under which

the privacy of the benign agents are preserved. Xue et al. [17] consider the privacy problem

in autonomous vehicle networks with a canonical Double-Integrator-Network model when the

system is either noise-free or subject to white Gaussian observation noise.

In this paper, we propose a privacy preserving average consensus algorithm, which computes

the exact average of the initial values and ensures that the initial value of an agent cannot

be perfectly inferred by the other participating agents. The requirement of the exact average

consensus proposes new challenges, as one need to design a correlated noise process to ensure

that the noise does not affect the consensus result. Hence, the techniques developed in [14], [15]

cannot be directly applied to the average consensus case.

A preliminary version of these results is available in [18]. In this paper the analysis is extended

in the following directions:

• We derive the exact asymptotic estimation performance P .

• We consider a general consensus scheme and prove that our privacy preserving consensus

algorithm achieves minimum privacy breach.

The rest of the paper is organized as follows: in Section II, we provide a brief introduction of

the average consensus algorithm. A privacy preserving average consensus algorithm is proposed

in Section III and its properties are proved in Section IV. In Section V, we consider a more

general consensus framework and prove that our algorithm discloses the minimum amount of

information among all possible average consensus algorithms. An illustrative example on a simple

cyclic network is presented in Section VI. Finally, Section VII concludes the paper.

Notations: N is the set of non-negative integers. Rn×m is the set of n by m matrices. Sn is

the set of n by n symmetric matrices. The ith diagonal entry of the matrix X is denoted as Xii.

All the comparisons between matrices in this article are in positive semidefinite sense. 1 and 0

are all one and all zero vectors of proper dimension respectively. range(X), null(X) represent

the column space and the null space of the matrix X . ‖v‖ indicates the 2-norm of the vector v,

while ‖X‖ is the largest singular value of the matrix X .

August 25, 2016 DRAFT



4

II. PRELIMINARIES

In this section we briefly introduce the average consensus algorithm, the notation of which

will be used later in the paper.

We model a network composed of n agents as a graph G = {V, E}. V = {1, 2, . . . , n} is the

set of vertices representing the agents. E ⊆ V × V is the set of edges. (i, j) ∈ E if and only if

agent i and j can communicate directly with each other. In this paper we always assume that

G is undirected and connected. The neighborhood of agent i is defined as

N (i) , {j ∈ V : (i, j) ∈ E, j 6= i}.

Suppose that each agent has an initial scalar state xi(0). At each iteration, agent i will commu-

nicate with its neighbors and update its state according to the following equation:

xi(k + 1) = aiixi(k) +
∑

j∈N (i)

aijxj(k). (1)

Define x(k) , [x1(k), . . . , xn(k)]′ ∈ Rn and A , [aij] ∈ Rn×n. The update equation (1) can be

written in matrix form as

x(k + 1) = Ax(k). (2)

In the rest of the paper, A is assumed to be symmetric. Define the essential neighborhood Ne(i)

of an agent i to be the set of neighboring agents whose information is used to compute (1), i.e.,

Ne(i) , {j ∈ N (i) : aij 6= 0}. (3)

Furthermore, define the average vector and the error vector to be

x̄ ,
1′x(0)

n
1, z(k) , x(k)− x̄.

The goal of the average consensus is to guarantee that z(k)→ 0 as k →∞ through the update

equation (2). Let us arrange the eigenvalues of A in the decreasing order as λ1 ≥ λ2 . . . ≥ λn.

It is well known that the following conditions are necessary and sufficient in order to achieve

average consensus from any initial condition x(0):

(A1) λ1 = 1 and |λi| < 1 for all i = 2, . . . , n.

(A2) A1 = 1, i.e., 1 is an eigenvector of A.

For the rest of the paper, we assume that A satisfies Assumption (A1) and (A2).
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III. PROBLEM FORMULATION

One issue for the average consensus algorithm is that an agent in the network could potentially

infer the other agents’ exact initial condition xi(0)s, which may not be desirable when privacy

is of concern.

To avoid privacy breaches while enforcing that x(k) converges to x̄, we propose the following

privacy preserving average consensus algorithm:

Algorithm 1. 1) At time k, each agent generates a standard normal distributed random

variable vi(k) with mean 0 and variance 1. We assume that all the random variables

{vi(k)}i=1,...,n, k=0,1,... are jointly independent.

2) Each agent then adds a random noise wi(k) to its state xi(k), where

wi(k) =

vi(0) , if k = 0

ϕkvi(k)− ϕk−1vi(k − 1) , otherwise
, (4)

where 0 < ϕ < 1 is a constant for all agents. Define the new state to be x+i (k), i.e.,

x+i (k) = xi(k) + wi(k). (5)

3) Each agent then communicates with its neighbors and update its state to the average value,

i.e.,

xi(k + 1) = aiix
+
i (k) +

∑
j∈N (i)

aijx
+
j (k). (6)

4) Advance the time to k + 1 and go to step 1).

Define

w(k) , [w1(k), . . . , wn(k)]′ ∈ Rn, (7)

v(k) , [v1(k), . . . , vn(k)]′ ∈ Rn, (8)

x+(k) , [x+1 (k), . . . , x+n (k)]′ ∈ Rn. (9)

We can write (5) and (6) in matrix form as

x(k + 1) = Ax+(k) = A(x(k) + w(k)). (10)

Remark 1. Our noise model is motivated by the following requirements:
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1) The consensus algorithm needs to converge.

2) All nodes reach consensus on the exact average.

As a result, the noise needs to be decaying to ensure convergence and the asymptotic sum of the

noise needs to be 0 to avoid affecting the consensus results. The noise is chosen to be Gaussian

so that the maximum likelihood estimator is efficient and unbiased. Furthermore, the maximum

likelihood estimator can be written in an analytical form for Gaussian noise. On the other hand,

for other noise models, such as Laplacian noise, a closed form maximum likelihood estimator

may not exist. Nevertheless, in Section V, we will consider general noise model and prove that

our noise design (4) has minimum privacy breach.

Finally, We choose the variance of vi(k) to be 1 to simplify the notations. With proper scaling,

all the results in this article hold when Var(vi(k)) = σ2.

Remark 2. It is worth noticing that the proposed algorithm does not require additional commu-

nication structure, which may be desirable if the communication resources are limited. On the

other hand, the problem may become easier if secret communication channels can be established

between agents.

Furthermore, it is worth mentioning that privacy can be easily achieved if only the consensus

on some value is needed, since one has more freedom to design the noise process {w(k)}.

For instant, one can choose w(k) to be mutually independent with an exponentially decaying

covariance matrix [15]. On the other hand, to achieve the exact average consensus, one has to

ensure that the added noise process {w(k)} does not affect the consensus result, which implies

that {w(k)} must be correlated.

Without loss of generality, we only consider the case where agent n wants to infer the other

agents’ initial conditions. Denote the neighborhood of agent n as

N (n) = {j1, . . . , jm}.

Define

C ,
[
ej1 . . . ejm en

]′
∈ R(m+1)×n, (11)

where ei denotes the ith canonical basis vector in Rn with a 1 in the ith entry and zeros elsewhere.

The information set of agent n at time k can be defined as

I(k) , {xn(0), y(0), . . . , y(k)}, (12)
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where

y(k) , Cx+(k) = C(x(k) + w(k)). (13)

Notice that xn(k+ 1), k = 0, 1, . . . is not included in the information set since it can be directly

computed from y(k) using (6). We assume that agent n knows the A and C matrices and all

the variables in I(k) at time k.

Remark 3. Without the additional noise, i.e., w(k) = 0, the consensus algorithm is deterministic

and agent n can perfectly infer ζ ′x(0), given that ζ ∈ Rn lies in the observable space of (A, C),

which illustrates the necessity of the added noise.

Denote the maximum likelihood estimate of x(0) given I(k) as x̂(0|k), the variance of which

is defined as P (k). Since I(k) ⊂ I(k + 1), we have the following proposition:

Proposition 1. P (k) is monotonically non-increasing, i.e., P (k2) ≤ P (k1) if k1 ≤ k2.

Hence, the following limit is well-defined:

P , lim
k→∞

P (k). (14)

Since the noises vi(k) are independently Gaussian distributed, the maximum likelihood es-

timator is the minimum variance unbiased estimator. As a result, the matrix P determines the

fundamental limit on how accurate x(0) can be estimated by agent n. If there exists an vector

ζ ∈ Rn, such that

ζ ′Pζ = 0,

then if agent n wants to estimate ζ ′x(0), it could use ζ ′x̂(0|k) as the maximum likelihood estimate

of ζ ′x(0) at time k. Notice that the variance of such an estimate at time k is given by ζ ′P (k)ζ ,

which asymptotically converges to 0. Hence, if ζ ′Pζ = 0, then agent n can asymptotically infer

a linear combination of the initial state ζ ′x(0) without any error. On the other hand, if

ζ ′Pζ > 0,

then agent n cannot perfectly estimate ζ ′x(0) even if it has collected an infinite number of

measurements I(∞). This observation leads to the following definition:
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Definition 1. A vector ζ ∈ Rn is called a disclosed vector if and only if ζ ′Pζ = 0. Further

define the disclosed subspace D as the null space of P .

By definition, if the ith canonical basis vector ei ∈ D is in the disclosed subspace, then agent

n can asymptotically infer e′ix(0) = xi(0), which implies that the privacy of the agent i is

breached. On the other hand, if ei /∈ D, then agent n cannot perfectly infer xi(0), which leads

to the following definition:

Definition 2. The initial condition xi(0) of agent i is kept private (from agent n) if and only if

ei /∈ D.

In the next section, we first prove that we can achieve average consensus using the proposed

scheme. We then provide an exact characterization on the matrix P and the disclosed space D.

IV. MAIN RESULTS

In this section, we first characterize the convergence rate of the privacy preserving average

consensus algorithm. We then compute P and the disclosed space D.

A. Convergence Rate

We consider the impact of the added noise w(k) on the performance of the consensus

algorithm. Let us define the mean square convergence rate ρ of our consensus algorithm as

ρ , lim
k→∞

(
sup

z(0)6=0

Ez(k)′z(k)

z(0)′z(0)

)1/k

, (15)

whenever the limit on the RHS exists. The expectation is taken over the noise process. The

following theorem establish the convergence properties of x(k):

Theorem 1. For any initial condition x(0), x(k) converges to x̄ in the mean square sense.

Furthermore, the mean square convergence rate ρ equals

ρ = max(ϕ2, |λ2|2, |λn|2). (16)

The following lemma is needed to prove Theorem 1:
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Lemma 1. Define matrix A to be

A , A− 11′/n.

The following equalities hold for all k ≥ 0

Ak(A− I) = Ak(A− I), (17)

Ak − 11′/n = Ak(I − 11′/n). (18)

Proof. By Assumption (A1) and (A2), the following equalities hold

11′

n
A =

11′

n
= A

11′

n
.

As a result, Ak = Ak − 11′/n. (17) and (18) can be proved by replacing Ak by Ak − 11′/n on

the RHS respectively.

Proof of Theorem 1. Since the RHS of (16) is strictly less than 1, we only need to prove (16),

since it implies the mean square convergence. By (10),

x(k) = Akx(0) +
k−1∑
t=0

Ak−tw(t)

= Akx(0) + Aϕk−1v(k − 1) +
k−2∑
t=0

ϕtAk−t−1(A− I)v(t).

Since x̄ = (11′/n)x(0), by Lemma 1, we have

z(k) = Akz(0) + Aϕk−1v(k − 1) +
k−2∑
t=0

ϕtAk−t−1(A− I)v(t).

Since {v(k)} are i.i.d. Gaussian vectors with zero mean and covariance I , the mean square error

can be written as

Ez(k)′z(k) = z(0)′A2kz(0) + tr(A2)ϕ2k−2

+
k−2∑
t=0

ϕ2t tr
[
A2k−2t−2(A− I)2)

]
.

(19)

Since all the terms on the RHS of (19) are non-negative,

Ez(k)′z(k) ≥ z(0)′A2kz(0),Ez(k)′z(k) ≥ tr(A2)ϕ2k−2,

which implies that

ρ ≥ max(ϕ2, |λ2|2, |λn|2).
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On the other hand, since the eigenvalues of A are λ1, . . . , λn, we have
k−2∑
t=0

ϕ2t tr
[
A2k−2t−2(A− I)2)

]
=

n∑
i=2

k−2∑
t=0

(
ϕ2tλ2k−2t−2i

)
(λi − 1)2

≤ (n− 1)(k − 1) [max(ϕ, |λ2|, |λn|)]2k−2 (λn − 1)2

The last inequality is true due to the fact that for all t,(
ϕ2tλ2k−2t−2i

)
(λi − 1)2 ≤ [max(ϕ, |λ2|, |λn|)]2k−2 (λn − 1)2.

Combining with (19), we can prove that

ρ ≤ max(ϕ2, |λ2|2, |λn|2).

which finishes the proof.

B. Estimation Performance

In this subsection, we provide upper and lower bounds on P . Notice that our goal is not to

design an estimator for agent n, but rather to prove a fundamental limit on the performance

for all possible unbiased estimators, which guarantees the privacy of x(0). We first reduce the

state space by removing xn(k), since it is already known to agent n. To this end, let us define

Ã ∈ R(n−1)×(n−1) as a principal minor of A by removing the last row and column. As a result,

the matrix A can be written as

A =

Ã η

η′ ann

 , (20)

where η ∈ Rn−1. The following lemma characterize the stability of Ã, the proof of which is

reported in the appendix:

Lemma 2. Ã is strictly stable, i.e., ‖Ã‖ < 1. Furthermore, for any i, Ãii < 1.

Let us further define the reduced noise vector as

ṽ(k) ,
[
v1(k) . . . vn−1(k)

]′
∈ Rn−1, (21)

w̃(k) ,
[
w1(k) . . . wn−1(k)

]′
∈ Rn−1, (22)
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We define the reduced state vector x̃(k) ∈ Rn−1, which satisfies the following update equation:

x̃(k + 1) = Ã(x̃(k) + w̃(k)), (23)

with initial condition

x̃(0) ,
[
x1(0) . . . xn−1(0)

]′
(24)

Remark 4. Roughly speaking, x̃(k) represents the state of the agent 1, ..., n− 1 after removing

the influence from agent n. It is worth noticing that in general, x̃(k) 6=
[
x1(k) . . . xn−1(k)

]′
.

Finally, let us define the reduced C̃ matrix as

C̃ ,
[
ẽj1 . . . ẽjm

]′
∈ Rm×(n−1), (25)

where ẽi denotes the ith canonical basis vector in Rn−1. The reduced measurement ỹ(k) ∈ Rm

is defined as

ỹ(k) , C̃(x̃(k) + w̃(k)). (26)

Throughout the subsection, we assume that (Ã, C̃) is observable. Otherwise, one can always per-

form a Kalman decomposition and consider only the observable subspace. Define the information

set based on the reduced measurements

Ĩ(k) , {xn(0), wn(0), . . . , wn(k), ỹ(0), . . . , ỹ(k)}. (27)

The following theorem establishes the equivalence between information set I(k) and Ĩ(k), the

proof of which is reported in the appendix for the sake of legibility.

Theorem 2. For any k ≥ 0, there exists an invertible linear transformation from the row vector[
xn(0) y(0)′ . . . y(k)′

]
to the row vector [

xn(0) wn(0) . . . wn(k) ỹ(0)′ . . . ỹ(k)′
]
.

By Theorem 2, Ĩ(k) is a sufficient statistic for estimating x(0). It is easy to see that {ỹ(0), . . . , ỹ(k)}

is a sufficient statistics for estimating x̃(0). Therefore, let us define P̃ (k) as the covariance of

the maximum likelihood estimate of x̃(0) given ỹ(0), . . . , ỹ(k). Since xn(0) is known to agent

n, we have the following proposition:
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Proposition 2. P (k) satisfies the following equality:

P (k) =

P̃ (k) 0

0′ 0

 .
Remark 5. It is worth noticing that throughout the paper we assume that agent n will follow the

update procedure described by Algorithm 1. However, one can easily apply the results derived

in this subsection to the case where the agent n does not follow the normal consensus protocol,

since estimation performance is derived using the reduced system, which represents the system

after removing the influence of the agent n. This can be seen as a special case of the separation

principle, where the estimation of the initial state is independent of the malicious actions (not

following the protocol) from agent n.

Moreover, the results derived in this subsection can be easily extended to the case where

multiple agents want to collaboratively infer the initial conditions of the other agents, by defining

the corresponding reduced system.

Before stating the main theorem, we need to define the following projection matrices:

U , C̃ ′C̃ ∈ R(n−1)×(n−1), V , I − U . (28)

Further denote the eigenvectors of the symmetric matrix (I−Ã)−1U(I−Ã)−1 as ψ1, . . . , ψn−1 ∈

Rn−1. Without loss of generality, we assume that {ψ1, . . . , ψn−1} forms an orthonormal basis of

Rn−1. Furthermore, by Lemma 2 and (25), we know that

rank
[
(I − Ã)−1U(I − Ã)−1

]
= m.

Hence, without loss of generality we assume that the eigenvalues corresponding to the eigen-

vectors {ψ1, . . . , ψm} are non-zero and the eigenvalues corresponding to {ψm+1, . . . , ψn−1} are

zero. Define the orthogonal matrix

Q ,
[
Q1 Q2

]
∈ R(n−1)×(n−1), (29)

where

Q1 ,
[
ψ1 . . . ψm

]
∈ R(n−1)×m, (30)

Q2 ,
[
ψm+1 . . . ψn−1

]
∈ R(n−1)×(n−m−1). (31)
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We are now ready to state the main theorem, the proof of which is reported in the appendix

for the sake of legibility.

Theorem 3. Suppose that ϕ ∈ (0, 1). P̃ is given by the following equality:

P̃ = Q2

[
Q′2(I − Ã)−1Y (I − Ã)−1Q2

]−1
Q′2, (32)

where Y = limk→∞ Y (k) is the limit of the following recursive Riccati equations:

Y (0) = ÃUÃ, (33)

Y (k + 1) = ÃUÃ (34)

+ϕ−2Ã
[
Y +(k)− Y +(k)

(
ϕ2I + Y +(k)

)−1
Y +(k)

]
Ã,

where

Y +(k) = VY (k)V . (35)

The following theorem characterizes the disclosed space:

Theorem 4. The disclosed space D is given by

D =


ζ̃

0

 ∈ Rn : ζ̃ ∈ range(Q1)

⊕ {ten : t ∈ R} , (36)

where en =
[
0 . . . 0 1

]′
, and ⊕ denotes the direct sum of subspaces.

Proof. By Proposition 2, e′nPen = 0, which implies that en ∈ D. Now consider a vector
[
ζ̃ ′ 0

]′
that is perpendicular to en. It is a disclosed vector if and only if ζ̃ ′P̃ ζ̃ = 0, which is equivalent

to Q′2ζ̃ = 0. As a result, ζ̃ belongs to the null space of Q′2, which is also the column space of

Q1.

The following corollary provides a topological condition on the computability of xi(0) for

agent n:

Corollary 1. Let ei ∈ Rn be the ith canonical basis vector. ei ∈ D if and only if i = n or

Ne(i)
⋃
{i} ⊆ N (n)

⋃
{n}.
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Proof. Consider the case where i 6= n. By definition, the column space of Q1 is the column

space of (I − Ã)−1C̃ ′. Therefore, ei ∈ D is equivalent to

ẽi − Ãẽi ∈ range(C̃ ′),

where ẽi ∈ Rn−1 is the ith canonical basis vector of Rn−1. By (25), a vector ṽ ∈ range(C̃ ′) if

and only if ṽj = 0 for all j /∈ N (n). By Lemma 2, the jth entry of ẽi − Ãẽi is 0 if and only if

j /∈ (Ne(i)
⋃
{i}) \{n}. Hence, Pii = 0 is equivalent to Ne(i)

⋃
{i} ⊆ N (n)

⋃
{n}.

By Corollary 1, as long as agent n cannot listen to agent i and all its essential neighbors, agent

n cannot estimate the initial condition xi(0) perfectly. Notice that this result is independent from

the choice of ϕ. Hence, we can potentially use a small ϕ that does not degrade the consensus

performance while achieving the privacy of x(0).

Moreover, to enforce the privacy of the initial condition xi(0) of node i to all other node j,

we should enforce that for any j 6= i, the following holds:

Ne(i)
⋃
{i} * N (j)

⋃
{j}. (37)

It is worth noticing that (37) can be verified locally. In particular, to falsify (37), j has to be a

neighbor of i. In other words, the initial condition of agent i can only be leaked to its neighboring

agents. As a consequence, i only need to enforce (37) for each neighboring agent j to ensure

that its initial condition cannot be estimated perfectly by any other node.

On the other hand, suppose at most k nodes are trying to estimate x(0) collaboratively. In

that case, to ensure the privacy of node i, i needs to ensure that the following condition holds

for all combinations of k nodes j1, . . . , jk 6= i:

Ne(i)
⋃
{i} * N (j1)

⋃
· · ·
⋃
N (jk)

⋃
{j1, j2, . . . , jk}. (38)

In fact, node i only needs to check those jis that are either its neighbor or two-hop neighbors

since otherwise {
Ne(i)

⋃
{i}
}⋂{

N (ji)
⋃
{ji}

}
= ∅.

This implies that (38) can also be verified locally.
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V. FUNDAMENTAL LIMITS ON PRIVACY FOR AVERAGE CONSENSUS

By Theorem 4, the disclosed space of an agent with m neighbors is of dimension m + 1.

One may wonder if this privacy “breach” is caused by our specific noise process defined by (4).

In this section, we consider a more general consensus scheme and prove that for any average

consensus algorithm given by (10), if the noise processes satisfies an independent assumption,

then the dimension of the disclosed space will be at least m + 1. As a result, our proposed

algorithm is optimal in the sense that it does not disclose any information more than necessary

to achieve the average consensus.

To this end, let us consider the following general consensus algorithm:

1) At time k, each agent adds a zero mean random noise wi(k) to its state xi(k). Define the

new state to be x+i (k), i.e.,

x+i (k) = xi(k) + wi(k). (39)

2) Each agent then communicates with its neighbors and update its state to the average value,

i.e.,

xi(k + 1) = aiix
+
i (k) +

∑
j∈N (i)

aijx
+
j (k). (40)

We make the following independent assumption on the noise wi(k):

(A3) Ewi(k1)wj(k2) = 0 if i 6= j.

Remark 6. It is worth noticing that the noise wi(k1) and wi(k2) generated by the same agent

i can be correlated, as is the case in (4). In practice, Assumption (A3) implies that the agents

are not collaborating when generating the noise.

In the hope of improving the legibility of the paper, we will slight abuse the notation by

adopting all the symbols defined in Section III and IV.

Let us further define the sum of the noise wi(k) as

ui(k) ,
k∑

t=0

wi(t). (41)

Since the statistics of the noise wi(k) is unspecified, an efficient estimator may not exist and

the matrix P may not be well-defined. As a result, we generalize our definition of disclosed

vector as follows:
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Definition 3. A vector ζ ∈ Rn is called a disclosed vector if and only if there exists a sequence

{θ̂(k)}, where θ̂(k) is a function of I(k) and

lim
k→∞

E(θ̂(k)− ζ ′x(0))2 = 0.

One can view θ̂(k) as an estimate (not necessarily the maximum likelihood estimate) of ζ ′x(0)

at time k. For the Gaussian case discussed in Section IV, one can take θ̂(k) = ζ ′x̂(0|k) to prove

that the definition of the disclosed vector for the general case coincides with Definition 1.

If ζ1 and ζ2 are both disclosed vectors, then any linear combination of them is also a disclosed

vector. Therefore, we can also generalize the concept of disclosed subspace as follows:

Definition 4. The disclosed subspace D (of agent n) is given by

D , {ζ ∈ Rn : ζ is a disclosed vector}. (42)

The following theorem provides a necessary condition for the consensus algorithm to converges

to the average.

Theorem 5. Suppose Assumption (A3) holds, then x(k) converges to x̄ in the mean squared

sense, i.e.,

lim
k→∞

E ‖x(k)− x̄‖2 = 0, (43)

implies that

lim
k→∞

Eui(k)2 = 0, ∀i = 1, . . . , n. (44)

Proof. Multiplying both the LHS and RHS of (10) by 1′, we get

1′x(k + 1) = 1′x(k) + 1′w(k).

Thus, 1′x(k + 1) = 1′x(0) +
∑n

i=1 ui(k). Since 1′x(0) = 1′x̄, (43) implies that

lim
k→∞

E

(
n∑

i=1

ui(k)

)2

= 0.

By Assumption (A3), Eui(k)uj(k) = 0. Therefore,

lim
k→∞

n∑
i=1

(
Eui(k)2

)
= lim

k→∞
E

(
n∑

i=1

ui(k)

)2

= 0,
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which is equivalent to (44).

We are now ready to state the main theorem, the proof of which is reported in the appendix:

Theorem 6. Suppose that (44) holds, then the disclosed space D contains the following sub-

spaces:

D ⊇


ζ̃

0

 ∈ Rn : ζ̃ ∈ range(Q1)

⊕ {ten : t ∈ R} . (45)

Remark 7. Comparing Theorem 6 with Theorem 4, we can see that the algorithm proposed in

Section III achieves the minimum privacy “breach”.

VI. NUMERICAL EXAMPLES

We consider the following network consisted of 5 agents, whose topology is illustrated in

Fig 1. We assume the following A matrix is used:

A =
1

4



2 1 0 0 1

1 2 1 0 0

0 1 2 0 1

0 0 0 3 1

1 0 1 1 1


.

5

1

34

2

Fig. 1. Network Topology

We choose ϕ = 0.9. Fig 2 illustrates the trajectory of xi(k). It is worth noticing that all xi(k)s

converge to the true average of the initial condition x(0).
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i(
k
)

x1(k)

x2(k)

x3(k)

x4(k)

x5(k)

Fig. 2. The trajectory of each state xi(k). The blue, red, green, yellow and purple lines correspond to

x1(k), x2(k), x3(k), x4(k), x5(k) respectively. The black dashed line corresponds to the average value of the initial x(0).

Next, we implement the privacy preserving consensus protocol proposed by Huang et al. [15],

by using independent and exponentially decaying Laplacian noise as our w(k). To be specific,

we assume that the probability density function of wi(k) is given by

PDF(wi(k)) =
1

2b(k)
exp

(
−|wi(k)|

b(k)

)
,

where b(k) = ϕk. From Fig 3, it can be seen that although consensus is achieved, the final result

is not the original average, which may not be desirable for certain applications. However, it is

worth noticing that Huang’s algorithm can potentially provide more privacy guarantees due to

the fact that it does not require consensus on the exact average. For the example discussed in

this section, Huang’s algorithm can preserve the privacy of agent 4. On the other hand, we prove

in Section V that the initial condition of the agent 4 will be leaked to agent 5 if we want to

achieve average consensus. Therefore, there is a trade-off between privacy and the accuracy of

the consensus.

Finally, Fig 4 shows Pii(k) of the maximum likelihood estimate of agent 4 and the asymptotic

Pii derived by Theorem 3. P33(k) is omitted since it equals P11(k) due to symmetry. Notice that

both P11 and P22 are greater than 0. As a result, agent 5 cannot infer the exact initial condition

of agent 1 or agent 2. On the other hand, P44 = 0. Therefore, the initial condition of agent 4 is

not private to agent 5. One can easily check that

Ne(4) ∪ {4} = {4, 5} ⊂ N (5) ∪ {5} = {1, 3, 4, 5}.
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0 10 20 30 40 50

−2

0

k
x
i(
k
)

x1(k)

x2(k)

x3(k)

x4(k)

x5(k)

Fig. 3. The trajectory of each state xi(k) when using the privacy preserving consensus protocol proposed by Huang et al. [15].

The blue, red, green, yellow and purple lines correspond to x1(k), x2(k), x3(k), x4(k), x5(k) respectively. The black dashed

line corresponds to the average value of the initial x(0).

Hence, by Corollary 1, e4 is in the disclosed space.

5 10 15 20
0

5

10

15

k

P
ii
(k

)

P11(k)

P11

P22(k)

P22

P44(k)

P44

Fig. 4. Pii(k) v.s. k. The blue solid and dashed line correspond to P11(k) and P11 respectively. The red solid and dashed line

correspond to P22(k) and P22 respectively. The black solid and dashed line correspond to P44(k) and P44 respectively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a privacy preserving average consensus algorithm. We compute the

exact mean square convergence rate of the proposed algorithm and characterize the covariance

matrix of the maximum likelihood estimate, which guarantees the privacy of the initial condition.

Moreover, we consider a general consensus framework and derive a fundamental limit for all
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average consensus algorithms and prove that our proposed algorithm achieves minimum privacy

breach. Future work includes investigating other types of consensus problems, such as finite step

consensus, binary consensus or consensus on network with time-varying topology, and designing

algorithms that preserve the privacy of the participating agents.

APPENDIX A

PROOF OF LEMMA 2

Proof. Denote the eigenvalues of Ã as λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n−1. By Cauchy’s Interlace Theo-

rem [19], we have

−1 < λn ≤ λ̃n−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ λ̃1 ≤ λ1 = 1.

Hence, we only need to prove that λ̃1 6= 1. Suppose the opposite. Let ‖ξ‖2 = 1 be the eigenvector

corresponding to λ̃1. Hence,

A

ξ
0

 =

Ãξ
η′ξ

 =

 ξ

η′ξ

 .
Since ‖A‖ = 1, the 2-norm of the RHS is no greater than 1, which implies that η′ξ = 0. As

a result,
[
ξ′ 0

]′
is also an eigenvector of A corresponding to eigenvalue 1, which contradicts

with Assumption (A1) and (A2). As a result, ‖Ã‖ < 1. Hence, I − Ã > 0, which implies that

Ãii < 1.

APPENDIX B

PROOF OF THEOREM 2

One intermediate result is needed before proving Theorem 2. First define

xr(k) ,
[
x1(k) . . . xn−1(k)

]′
∈ Rn−1.

The following lemma characterize the relation between xr(k) and x̃(k).

Lemma 3. xr(k + 1)− x̃(k + 1) =
∑k

t=0 Ã
k−tηx+n (t),∀k ≥ 0.

Proof. The lemma can be proved by the fact that

xr(k + 1) = Ã(xr(k) + w̃(k)) + ηx+n (k),

and xr(0) = x̃(0).
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We are now ready to prove Theorem 2.

Proof of Theorem 2. We will prove Theorem 2 by induction. First consider the case where k = 0.

By (26),

y(0)′ =
[
ỹ(0)′ xn(0) + wn(0)

]
.

Hence, Theorem 2 holds when k = 0. Suppose that Theorem 2 holds when k = t, we want to

prove that it still holds when k = t+ 1. By induction assumption, we only need to prove that

1) wn(t + 1) and ỹ(t + 1) can both be written as linear combinations of the variables in

I(t+ 1).

2) y(t+ 1) can be written as a linear combination of the variables in Ĩ(t+ 1).

It is easy to verify that

y(t+ 1)−

 ỹ(t+ 1)

wn(t+ 1)

 =

C̃(xr(t+ 1)− x̃(t+ 1))

xn(t+ 1)

 .
By Lemma 3 and (10), the RHS can be written as a linear combination of the variables in I(t)

and hence a linear combination of the variables in Ĩ(t) by the induction assumption, which

finishes the proof.

APPENDIX C

PROOF OF THEOREM 3

We first try to explicitly write down the relationship between x̃(0) and ỹ(k). By definition,

ỹ(k) = C̃

(
Ãkx̃(0) +

k∑
t=0

Ãk−tw̃(t)

)
. (46)

We want to replace w̃(t) in (46) with ṽ(t) since {ṽ(t)}t is uncorrelated. As a result, we have
k∑

t=0

ỹ(t) = C̃(I − Ãk+1)(I − Ã)−1x̃(0) + C̃

k∑
t=0

Ãk−tϕtṽ(t), (47)

which implies that 
∑0

t=0 ỹ(t)/ϕ0∑1
t=0 ỹ(t)/ϕ1

...∑k
t=0 ỹ(t)/ϕk

 = H(k)x̃(0) + F (k)


ṽ(0)

ṽ(1)
...

ṽ(k)

 , (48)
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where

H(k) ,


C̃(I − Ã)−1/ϕ0

C̃(I − Ã)−1/ϕ1

...

C̃(I − Ã)−1/ϕk

−

C̃Ã(Ã/ϕ)0(I − Ã)−1

C̃Ã(Ã/ϕ)1(I − Ã)−1

...

C̃Ã(Ã/ϕ)k(I − Ã)−1

 , (49)

and

F (k) ,


C̃

C̃Ã/ϕ C̃
...

... . . .

C̃(Ã/ϕ)k C̃(Ã/ϕ)k−1 . . . C̃

 . (50)

To simplify notations, let us define

H1(k) ,


ϕ0I

...

ϕ−kI

 C̃(I − Ã)−1, (51)

H(k) ,


C̃Ã(Ã/ϕ)0

C̃Ã(Ã/ϕ)1

...

C̃Ã(Ã/ϕ)k

 , H2(k) , H(k)(I − Ã)−1. (52)

Therefore H(k) = H1(k)−H2(k). The covariance P̃ (k) of the maximum likelihood estimate [20]

is given by

P̃ (k) =
[
H(k)′(F (k)F (k)′)−1H(k)

]−1
. (53)

Consider the following matrix

S(k) , Q′H(k)′(F (k)F (k)′)−1H(k)Q =

S11(k) S12(k)

S ′12(k) S22(k)

 ,
where

S11(k) = Q′1H(k)′(F (k)F (k)′)−1H(k)Q1,

S22(k) = Q′2H(k)′(F (k)F (k)′)−1H(k)Q2,

S12(k) = Q′1H(k)′(F (k)F (k)′)−1H(k)Q2,
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and Q is defined in (29). We know that

P̃ (k) = Q

S11(k) S12(k)

S ′12(k) S22(k)

−1Q′.
The rest of the proof will be divided into 3 steps:

1) We prove that for any M > 0, we have S11(k) > MI if k is large enough.

2) We prove that S22(k) converges to a unique positive definite matrix.

3) We derive P̃ (k) using the above two intermediate results and the fact that P̃ (k) is non-

increasing.

Step 1: S11(k)→∞

To prove that for any M > 0, there exists a k, such that S11(k) ≥ MI , we first need the

following lemma:

Lemma 4. Assume that X =

X11 X12

X ′12 X22

 is strictly positive definite, then the following

inequality holds V1
V2

′X−1
V1
V2

 ≥ V ′1X
−1
11 V1, (54)

where V1 and V2 are matrices of proper dimension.

Proof. Using the Schur complement, we can write X−1 as

X−1 =

X−111 0

0 0


+

X−111 X12

I

 (X22 −X ′12X−111 X12)
−1
[
X ′12X

−1
11 I

]
,

which immediately implies (54).

We are now ready to prove the main result for this subsection:

Lemma 5. For any M > 0, there exists a k, such that S11(k) ≥MI .
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Proof. Let us define

h(k) = C̃(I − Ã)−1
[
ϕ−kI − Ã(Ã/ϕ)k

]
.

By definition, we know that

H(k) =


h(0)

...

h(k)

 .
Hence, by Lemma 4, we know that

S11(k) ≥ Q′1h(k)′

(
C̃

k∑
t=0

(Ã/ϕ)2tC̃ ′

)−1
h(k)Q1

= Q′1(ϕkh(k))′

(
C̃

k∑
t=0

Ã2tϕ2k−2tC̃ ′

)−1
ϕkh(k)Q1.

Since both Ã and ϕ are stable, we have

Ã2tϕ2k−2t ≤ ρ̃kI,∀0 ≤ t ≤ k,

where ρ̃ = max(ϕ2, ‖Ã‖2) < 1. Therefore,

C̃
k∑

t=0

Ã2tϕ2k−2tC̃ ′ ≤ kρ̃kC̃C̃ ′ = kρ̃kI.

Thus,

S11(k) ≥ ρ̃−k

k
(ϕkh(k)Q1)

′(ϕkh(k)Q1). (55)

Since ϕkh(k)Q1 converges to C̃(I − Ã)−1Q1, by the definition of Q1,

lim
k→∞

(ϕkh(k)Q1)
′(ϕkh(k)Q1)

= Q′1(I − Ã)−1C̃ ′C̃(I − Ã)−1Q1 > 0,

which concludes the proof.
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Step 2: Convergence of S22(k)

We now prove that

lim
k→∞
S22(k) = Q′2(I − Ã)−1Y (I − Ã)−1Q2 > 0, (56)

which requires the following lemmas:

Lemma 6. {Y (k)} matrices satisfy the following equality:

Y (k) = H(k)′ (F (k)F (k)′)
−1H(k) (57)

Proof. We prove (57) by induction. Since F (0)F (0)′ = C̃C̃ ′ = I , it is clear that (57) holds

when k = 0. Now assume that (57) holds for k. We need to prove that

Y (k + 1) = H(k + 1)′ (F (k + 1)F (k + 1)′)
−1H(k + 1) (58)

By the definition of the matrix F (k) and H(k), we know that

F (k + 1) =

 C̃

ϕ−1H(k) F (k)

 ,
and

H(k + 1) =

 ϕC̃

H(k)

 Ã/ϕ.
As a result, the following equality holds:

(F (k + 1)F ′(k + 1))
−1

=

 I C̃H(k)′/ϕ

H(k)C̃ ′/ϕ H(k)H(k)′/ϕ2 + F (k)F (k)′

−1

=

I + C̃H(k)′Z(k)H(k)C̃ ′/ϕ2 −C̃H(k)′Z(k)/ϕ

−Z(k)H(k)C̃ ′/ϕ Z(k)

 , (59)

where

Z(k) =
[
F (k)F (k)′ + ϕ−2H(k)VH(k)′

]−1 (60)

August 25, 2016 DRAFT



26

The first equality of (59) holds since C̃C̃ ′ = I . The second equality holds due to the matrix

inversion lemma. Using (59), the RHS of (58) can be simplified as

RHS = ϕ−2Ã(ϕ2U + VH(k)′Z(k)H(k)V)Ã (61)

Since V is a projection matrix, by the matrix inversion lemma

Z(k) =
[
F (k)F (k)′ + ϕ−2H(k)VVH(k)′

]−1
= (F (k)F (k)′)

−1 − Z1(k)Z2(k)Z1(k)′ (62)

where

Z1(k) = (F (k)F (k)′)
−1H(k)V ,

Z2(k)=
[
ϕ2I + VH(k)′ (F (k)F (k)′)

−1H(k)V
]−1

.

Now by the induction assumption, (35), (61) and (62), the RHS of (58) can be rewritten as

RHS = ÃUÃ

+ ϕ−2Ã
[
Y +(k)− Y +(k)

(
ϕ2I + Y +(k)

)−1
Y +(k)

]
Ã

= Y (k + 1).

Thus, (57) holds for all k by induction.

Lemma 7. The following statements on the {Y (k)} matrices defined recursively in (35) and

(34) hold:

1) Y (k) is non-decreasing in k.

2) The limit Y = limk→∞ Y (k) is well-defined.

3) Y + U > 0 is strictly positive definite.

Proof. Let us define the following function for positive semidefinite matrices:

g(X) , X −X(ϕ2I +X)−1X.

For any matrix K of proper dimension, it can be verified that

ϕ2KK ′ + (I +K)X(I +K)′ = (K −K∗)(ϕ2I +X)(K −K∗)′ + g(X),
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where K∗ = −X(ϕ2I +X)−1. Therefore, g(X) can be written as the solution of the following

optimization problem:

g(X) = arg min
K

ϕ2KK ′ + (I +K)X(I +K)′.

If X ≥ 0 is positive semidefinite, then the RHS ≥ 0 for all K matrices. Hence we can conclude

that g(X) ≥ 0 if X ≥ 0. Furthermore, by Lemma 1(c) in [21], g(X) is non-decreasing in X .

On the other hand, we could perform an eigen-decomposition on X , i.e.,

X = QΛQT ,

where Q is an orthogonal matrix and Λ = diag(λ1, . . . , λn−1) ≥ 0 is diagonal. Therefore, g(X)

can be rewritten as

g(X) = Qdiag
(

ϕ2λ1
ϕ2 + λ1

, . . . ,
ϕ2λn−1
ϕ2 + λn−1

)
QT .

Hence, we can conclude that for any X ≥ 0,

1) g(X) ≤ ϕ2I ,

2) and null(g(X)) = null(X).

We now prove that Y (k) is non-decreasing in k by induction. Manipulating (34), we have

Y (1) = ÃUÃ+ ϕ−2Ãg(Y +(0))Ã ≥ ÃUÃ = Y (0),

where we use the fact that g(Y +(0)) ≥ 0. Now suppose that Y (k) ≥ Y (k − 1). By (35),

Y +(k) ≥ Y +(k − 1). By the fact that the function g is non-decreasing, Y (k + 1) ≥ Y (k).

Therefore, by induction, Y (k) is non-decreasing.

Next we prove that Y (k) converges to a matrix Y . Since g(X) ≤ ϕ2I , we know that

Y (k + 1) = ÃUÃ+ ϕ−2Ãg(Y +(k))Ã ≤ Ã(U + I)Ã.

Thus, Y (k) is non-decreasing and bounded, which implies that the limit Y = limk→∞ Y (k) is

well-defined.

Finally we prove that Y + U is strictly positive. We first prove that for any X ≥ 0

null(U + ϕ−2g(VXV)) ⊆ null(U) ∩ null(X). (63)

Assuming that v ∈ null(U + ϕ−2g(VXV)). By the fact that U and X are positive semidefinite,

we know that

v′Uv + ϕ−2v′g(VXV))v = 0,
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which implies that v′Uv = 0 and v′VXVv = 0 since null(g(VXV)) = null(VXV). Moreover

Uv = 0. Now since U + V = I , Vv = v, which further implies that v′Xv = 0. Thus, v′Xv =

0 = v′Uv, which proves (63).

By induction and (63), we can prove that

null(Y (k)) ⊆ null(ÃUÃ) ∩ · · · ∩ null(Ãk+1UÃk+1).

As a result, by the fact that both Y (k) and U are positive semidefinite,

null(Y (k) + U) ⊆ null(ÃUÃ) ∩ · · · ∩ null(Ãk+1UÃk+1) ∩ null(U).

By the assumption that (Ã, C̃) is observable, we know that Y +U > 0 is strictly positive definite.

By the definition of Q2, we know that

Q′2(I − Ã)−1C̃ ′C̃(I − Ã)−1Q2 = 0.

Hence, H1(k)Q2 = 0 and

H(k)Q2 = H2(k)Q2 = H(k)(I − Ã)−1Q2,

which, combined with Lemma 6, proves the first equality in (56). Notice that Q′2(I−Ã)−1U(I−

Ã)−1Q2 = 0, we know that

lim
k→∞
S22(k) = Q′2(I − Ã)−1Y (I − Ã)−1Q2

= Q′2(I − Ã)−1(Y + U)(I − Ã)−1Q2 > 0.

Step 3: Proof of Theorem 3

We now prove Theorem 3 using Lemma 5 and (56). Before proving the main theorem, we

need the following lemma:

Lemma 8. Let {S(k)}k=0,1,... be an infinite non-deceasing sequence of positive semidefinite

matrices, i.e.,

0 ≤ S(0) ≤ S(1) ≤ · · · ≤ S(k) ≤ . . .
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Assume that S(k) can be written in a block diagonal form

S(k) =

S11(k) S12(k)

S12(k)′ S22(k)

 ,
and the following conditions hold:

1) S22(k) converges to a strictly positive definite matrix, i.e., limk→∞ S22(k) = S22 > 0;

2) For any M > 0, there exists a k, such that S11(k) > MI .

Then there exists an N , such that for all k ≥ N , S(k) is strictly positive definite (and hence

invertible). Furthermore,

lim
k→∞

(S(k))−1 =

0 0

0 S−122

 . (64)

Proof. From the assumptions, we know that there exists an N1, such that S11(k), S22(k) are all

strictly positive definite if k ≥ N1. We will first prove the following limits:

lim
k→∞

S21(k) (S11(k))−1 S12(k) = 0 (65)

For any ε > 0, let us choose N2 ≥ N1, such that S22(k) ≥ S22− εI , for all k ≥ N2. As a result,

if k ≥ N2, then we have

S21(k) (S11(k))−1 S12(k) (66)

≤ 2S21(N2) (S11(k))−1 S12(N2)

+ 2 (S21(k)− S21(N2)) (S11(k))−1 (S12(k)− S12(N2)) .

Since for any M ≥ 0, S11(k) ≥MI when k is large enough, we can find an N3 ≥ N2, such

that for all k ≥ N3,

S21(N2) (S11(k))−1 S12(N2) ≤ εI. (67)

For the second term on the RHS of (66), since S(k) is non-decreasing, we know that S(k)−

S(N2) ≥ 0, which implies that for any k ≥ N2

εI ≥ S22 − S22(N2) ≥ S22(k)− S22(N2)

≥ (S21(k)− S21(N2)) (S11(k))−1 (S12(k)− S12(N2)) ,
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where the last inequality is due to Schur complement and the fact that S11(k) ≥ S11(k)−S11(N2).

Therefore, for any k ≥ N2,

(S21(k)− S21(N2)) (S11(k))−1 (S12(k)− S12(N2)) ≤ εI. (68)

Combining (67) and (68), we know that for any k ≥ N3,

S21(k) (S11(k))−1 S12(k) ≤ 4εI.

Therefore, (65) holds, which further implies that

lim
k→∞

S22(k)− S21(k) (S11(k))−1 S12(k) = S22 > 0. (69)

As a result, when k is large enough, S(k) is strictly positive definite.

Next we want to prove the following equality:

lim
k→∞

[
S11(k)− S12(k) (S22(k))−1 S21(k)

]−1
= 0 (70)

Let us rewrite (65) as

lim
k→∞

tr
(
S21(k) (S11(k))−1 S12(k)

)
= 0. (71)

Let (S11(k))−1/2 be a positive definite matrix such that

(S11(k))−1/2 (S11(k))−1/2 = (S11(k))−1 .

Using the properties of the trace operator, (71) can be written as,

lim
k→∞

tr
(

(S11(k))−1/2 S12(k)S21(k) (S11(k))−1/2
)

= 0,

which means for any ε > 0, we can find an N , such that for all k ≥ N , we have

(S11(k))−1/2 S12(k)S21(k) (S11(k))−1/2 ≤ εI,

which is equivalent to

S12(k)S21(k) ≤ εS11(k).

Since S22(k) converges to S22 > 0, we can prove that for large enough k, the following inequality

holds

S12(k) (S22(k))−1 S21(k) ≤ 0.5S11(k).
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Combining with the fact that for any M > 0 S11(k) > MI if k is large enough, we can prove

(70). Equation (64) is a direct consequence of (69), (70) and the fact that the inverse of S is

positive semidefinite.

We are now ready to prove Theorem 3:

Proof. By Proposition 1, S(k) is monotonically non-decreasing. Hence, by Lemma 5, (56) and

Lemma 8, we know that

lim
k→∞
S(k)−1 =

0 0

0
(
Q′2(I − Ã)−1Y (I − Ã)−1Q2

)−1
 .

Use the fact that P̃ = limk→∞Q′S(k)−1Q, we can conclude the proof.

APPENDIX D

PROOF OF THEOREM 6

The following lemma is needed to prove Theorem 6.

Lemma 9. Suppose that a non-negative sequence {a(k)} satisfies

lim
k→∞

a(k) = 0,

then for any 0 < λ < 1, the following equality holds

lim
k→∞

(
k∑

t=0

λt
√
a(k − t)

)2

= 0.

Proof. Since a(k) converges to 0, there exists M > 0, such that
√
a(k) < M for all k. For any

ε > 0, there exists an N1, such that for all k ≥ N1,(
k∑

t=N1

λt
√
a(k − t)

)2

≤

(
M

∞∑
t=N1

λt

)2

≤ ε/4.

On the other hand, since a(k) converges to 0, there exists an N2 ≥ N1, such that for any k > N2(
N1−1∑
t=0

λt
√
a(k − t)

)2

≤ ε/4,
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which implies that(
k∑

t=0

λt
√
a(k − t)

)2

=

(
N1−1∑
t=0

λt
√
a(k − t) +

k∑
t=N1

λt
√
a(k − t)

)2

≤ 2

(
N1−1∑
t=0

λt
√
a(k − t)

)2

+ 2

(
k∑

t=N1

λt
√
a(k − t)

)2

≤ ε,

which finishes the proof.

We are now ready to prove Theorem 6.

Proof. Since xn(0) ∈ I(k), it is clear that en ∈ D. Now consider the vector
∑k

t=0 ỹ(t), which

is a function of I(k) by Theorem 2. One can easily prove that
k∑

t=0

ỹ(t) = C̃
k∑

t=0

Ãtx̃(0) +
k∑

t=0

Ãk−tũ(t),

where ũ(k) ,
[
u1(k) . . . un−1(k)

]′
∈ Rn−1. Therefore

E‖
k∑

t=0

ỹ(t)− C̃(I − Ã)−1x̃(0)‖2

= ‖C̃Ãk+1(I − Ã)−1x(0)‖2 + E‖
k∑

t=0

Ãk−tũ(t)‖2.

(72)

By Lemma 2, the first term on the RHS of (72) converges to 0 as k →∞. On the other hand,

by Cauchy-Schwarz inequality, we have

E‖
k∑

t=0

Ãk−tũ(t)‖2 ≤

(
k∑

t=0

√
E ‖Ãk−tũ(t)‖2

)2

≤

(
k∑

t=0

‖Ã‖k−t
√

E ‖ũ(t)‖2
)2

By (44) and Lemma 9, the second term on the RHS of (72) converges to 0. Therefore,

lim
k→∞

E‖
k∑

t=0

ỹ(t)− C̃(I − Ã)−1x̃(0)‖2 = 0.
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Since the column space of Q1 coincides with the column space of (I − Ã)−1C̃ ′,
ζ̃

0

 ∈ Rn : ζ̃ ∈ range(Q1)

 ⊂ D.
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