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An Online Approach to Physical Watermark Design
Hanxiao Liu, Yilin Mo†, Jiaqi Yan, Lihua Xie, and Karl H. Johansson

Abstract—This paper considers the problem of designing
physical watermark signals in order to optimally detect possible
replay attack in a linear time-invariant system, under the
assumption that the system parameters are unknown and need to
be identified online. We first provide a replay attack model, where
an adversary replays the previous sensor data in order to fool
the system. A physical watermarking scheme, which leverages
a random control input as a watermark to detect the replay
attack, is then introduced. The optimal watermark signal design
problem is cast as an optimization problem, which aims to achieve
the optimal trade-off between control performance and intrusion
detection. An online watermarking design and system identifica-
tion algorithm is provided to deal with systems with unknown
parameters. We prove that the proposed algorithm converges
to the optimal one and characterize the almost sure convergence
rate. A numerical example and an industrial process example are
provided to illustrate the effectiveness of the proposed strategy.

Index Terms—Cyber-Physical System, Security, Intrusion De-
tection, System Identification

I. INTRODUCTION

CYBER-Physical Systems (CPSs) offer close integration
of computational elements and physical processes [1].

They are defined as systems where “physical and software
components are deeply intertwined, each operating on different
spatial and temporal scales, exhibiting multiple and distinct
behavioral modalities, and interacting with each other in a
myriad of ways that change with context” [2]. Such systems
play a critical role in large varieties of fields, such as man-
ufacturing, health care, environment control, transportation,
etc. Due to their wide applications and critical functions, it
is of paramount importance to ensure the secure operation of
CPS [3], [4]. Any successful attack on CPS may jeopardize
critical infrastructure and people’s lives and properties, even
threaten national security. In 2010, Stuxnet malware launched
a devastating attack on Iranian uranium enrichment facili-
ties [5], [6]. This incident raised a great deal of attention to
CPS security in recent years [7].
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However, CPS security faces a wide variety of challenges.
Cardenas et al. [8] discussed three main challenges and
identified unique properties of CPS security compared to
traditional IT security. Besides, the physical part of CPS
poses new security challenges. Similar discussion can be found
in [9]. Gollmann and Krotofil [10] pointed out that also people
performing security analysis of CPS is a key challenge. The
authors argued that it is difficult for people to expertise in both
cyber and physical safety and able to appreciate limitations in
their own domain.

Literature Review

A significant amount of research effort has been devoted to
intrusion and anomaly detection algorithms to enhance CPS
security. Zimmer et al. [11] presented three mechanisms
for time-based intrusion detection. The techniques, through
bounds checking, were developed in a self-checking manner
by the application and through the operating system scheduler.
Mitchell and Chen [12] proposed a hierarchical performance
model and techniques for intrusion detection in CPS. They
classified the modern CPS intrusion detection system tech-
niques into two classes: detection technique and audit mate-
rial. They summarized advantages and disadvantages in [13].
Kwon et al. [14] discussed necessary and sufficient conditions
for when the attacker could be successful without being de-
tected. Their method can be employed to evaluate vulnerability
degree of certain CPSs. Corresponding detection and defense
methodologies against stealthy deception attacks can be devel-
oped. In [15], the authors proposed a mathematical framework
for CPS and investigated limitations of the monitoring system.
Centralized and distributed attack detection and identification
monitors were also discussed.

In this paper, we consider the detection problem of replay
attacks. In [16], [17], [18], a replay attack model is defined
and its effect on a steady-state control system is analyzed.
An algebraic condition is provided on the detectability of
the replay attack. For those systems that cannot detect replay
attack efficiently, a physical watermarking scheme is proposed
to enable the detection of a replay attack. In particular,
by injecting a random control signal, the watermark signal,
into the control system, it is possible to secure the system.
However, the watermark signal may deteriorate the control
performance, and therefore it is important to find the optimal
trade-off between the control performance and the detection ef-
ficiency, which can be cast as an optimization problem. Similar
watermarking schemes are also proposed in the literature [19],
[20], [21].

Different from the previous additive watermarking schemes,
a multiplicative sensor watermarking scheme is proposed
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in [22]. In this scheme, each output is respectively fed to a
SISO watermark generator and due to the inclusion of a water-
mark removing functionality, the control performance will not
be sacrificed. Applying some techniques of non-cooperative
stochastic games, Miao et al. [23] designed a suboptimal
switching control policy that balances control performance
and the intrusion detection rate for replay attacks. Hoehn and
Zhang [24] provided a novel technique via exciting the system
in non-regular time intervals and signal processing to detect
the replay attack. Other replay attack detection mechanisms
have also been proposed in the literature [25].

It is worth noticing that in majority of the aforementioned
research, the precise knowledge of the system parameters
is required in order to design the watermark signal and
the detector. However, acquiring these parameters may be
troublesome and costly. Moreover, for a large system, the
system parameters may change during its operation. Hence, it
is beneficial for the system to learn the parameters in an online
fashion and automatically generate the optimal detector and
the watermark signal in real-time. The problem of learning
parameters of dynamical systems, system identification, has
been studied over the past decades. Most methods, however,
require persistent excitation on the input.

In this paper, due to the nature of the optimal watermark
signal, we shall design the input that asymptotically converges
to a signal that does not satisfy the persistent excitation
condition. However, by controlling the convergence rate, we
can still prove that the system parameters converge to true
parameters almost surely.

Some preliminaries results regarding online design of phys-
ical watermarks are contained in our former work [26]. The
main differences between the current version of the paper and
[26] are: 1) we not only prove that we can asymptotically
identify the system parameters, but also characterize the rate
of the convergence; 2) we provide a procedure to automati-
cally generate the Neyman-Pearson detector; 3) we add the
simulation on an industrial process to verify the effectiveness
of the proposed approach.

Contributions
The goal of this paper is to develop a data-driven approach

to design physical watermark signals to protect systems with
unknown parameters, against replay attack. The main contri-
butions of this paper are threefold:

1) An online “learning” algorithm is presented to simulta-
neously infer the parameters of the system based only
on the system input and output data and generate the
watermark signal as well as the optimal detector based on
the estimated parameters. To the best of our knowledge,
it is the first time to study the detection of replay attacks
under the scenario with unknown system parameters.

2) We prove that the system parameters which are inferred
via our proposed online algorithm converge to the true
parameters almost surely even if the input signal asymp-
totically converges to a degenerate signal.

3) We also characterize the almost sure convergence rate of
the estimated system parameters to the true parameters
and provide an upper bound for this rate.

Outline of the Paper

The rest of paper is organized as follows. Section II
formulates the problem by introducing the system as well
as the attack model. The physical watermarking scheme is
introduced in Section III. In Section IV, we present an online
algorithm to simultaneously infer the parameters of the system
and design the watermark signal as well as the detector based
on the estimated parameters. We further prove the almost sure
convergence of the watermark signal to the optimal one and
characterize the convergence rate. In Section V, a numerical
example and an industrial process example are provided to
verify the effectiveness of the proposed technique. Concluding
remarks are given in Section VI. For the sake of legibility, most
of the proofs are included in the appendix.

Notations

‖A‖ of the matrix A is the spectral norm of an m×n matrix
A, which is its largest singular value. A⊗B is the Kronecker
product of matrices A and B. A > 0 (A ≥ 0) indicates that
A is positive definite (positive semidefinite). A+ denotes the
pseudo-inverse of A. We say that f(k) ∼ O(g(k)) if there
exists an M > 0, such that |f(k)| ≤M×g(k) for all k ∈ N0.

II. PROBLEM FORMULATION

In this section, we introduce a linear time invariant system
model of CPS as well as a replay attack model, which will be
employed in the rest of this paper.

We consider a linear time-invariant system described by the
following equation:

xk = Axk−1 +Bφk + wk, (1)

where xk ∈ Rn is the state vector at time k, and wk ∈ Rn
is a zero mean independently and identically distributed (i.i.d)
Gaussian process noise with covariance Q ≥ 0. φk ∈ Rp
is the watermark signal that will be discussed in details in
Section III.

A sensor network is monitoring the above system. The
observation equation is given by

yk = Cxk + vk, (2)

where yk ∈ Rm is a collection of all sensors’ measurements at
time k. vk ∈ Rm is a zero mean i.i.d. Gaussian measurement
noise with covariance R ≥ 0.

Remark 1. To simplify notations, in this paper we consider
a stable open-loop system. However, our framework can be
easily extended to a closed loop system with an unstable plant
but a stabilizing controller, which is discussed in Section III.

Notice that the purpose of the watermark signal is intrusion
detection instead of stabilization. As a result, we only consider
stable systems or systems that have been pre-stabilized by
some controller.

We assume that the process noise w0, w1, · · · and the
measurement noise v0, v1, · · · are independent of each other.
Furthermore, since CPSs usually operate for an extended
period of time, it is assumed that the system is already in
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the steady state, which means that the initial condition x−1

is a zero mean Gaussian random vector independent of the
process noise and the measurement noise and with covariance
Σ, where Σ satisfies the following Lyapunov equation:

Σ = AΣAT +Q. (3)

We further make the following assumptions regarding the
system parameters:

Assumption 1. The system is strictly stable. Furthermore,
(A,C) is observable and (A,B) is controllable.

Remark 2. The observability and controllability assumption
is without loss of generality as we can perform a Kalman
decomposition [27] and only work with the observable and
controllable subspace.

Next we introduce a replay attack model. We assume that
the adversary has the following capabilities:

1) The attacker has access to all the real-time sensory
data. In other words, it knows the sensor’s measurement
y0, · · · , yk at time k.

2) The attacker can modify the real sensor signals yk to
arbitrary sensor signals y′k.

Given these capabilities, the adversary can employ the
following replay attack strategy:

1) The attacker records a sequence of sensor measurements
yks from time k1 to k1 + T , where T is large enough to
guarantee that the attacker can replay the sequence for an
extended period of time during the attack.

2) The attacker modifies the sensor measurements yk to the
recorded signals from time k2 to k2 + T , i.e.,

y′k = yk−∆k, ∀ k2 ≤ k ≤ (k2 + T ),

where ∆k = k2 − k1.
Notice that since the system is already in the steady state,

both the replayed signal y′k and the real signal yk from the
sensors will share exactly the same statistics. As a result,
replay attack can be stealthy for a large class of linear systems,
if no watermark signal is present, i.e. φk = 0. For more
detailed discussion on the detectability of replay attack, please
refer to [16].

Let us consider the system illustrated in Fig. 1.

Uk φk Plant Sensor yk

wk vk

Detector

Online Learning

xk

Fig. 1. The system diagram.

The overarching goal of this paper is to design an online
learning algorithm for the optimal replay attack detector as
well as the optimal parameters Uk of the physical watermark
signals, based on the collected input φk and output yk. The
physical watermark scheme is introduced in detail in Sec-
tion III. Based on this scheme, we develop an approach to infer

the system parameters based only on the system input data φk
and output data yk, and design the highlighted parameters in
Fig. 1: the covariance Uk of the watermark signal φk and the
optimal detector based on the estimated parameters.

III. PHYSICAL WATERMARK FOR SYSTEMS WITH KNOWN
PARAMETERS

This section introduces the concept of physical watermark,
which enables the detection of replay attack. The optimal
physical watermark is derived via solving an optimization
problem which aims to achieve the optimal trade-off between
control performance and intrusion detection. Then we will
present the extension to a closed-loop system.

A. Physical Watermark Scheme

The main idea of physical watermark is to inject a random
noise φk, which is called the watermark signal, into the system
(1) to excite the system and check whether the system responds
to the watermark signal in accordance to the dynamical model
of the system. In this section we will restrict the watermark
signal φk to be zero mean i.i.d. Gaussian random variables
and its covariance is denoted as U .

In the absence of the attack, yk can be represented as:

yk =

k∑
t=0

CAtBφk−t +

k∑
t=0

CAtwk−t + vk + CAk+1x−1.

(4)

For simplicity, let us define

ϕk ,
k∑
τ=0

Hτφk−τ , ϑk ,
k∑
t=0

CAtwk−t + vk + CAk+1x−1,

(5)

where Hτ is defined as

Hτ , CAτB. (6)

Therefore, yk can be simplified as:

yk = ϕk + ϑk. (7)

It is easy to show that ϕk is a zero mean Gaussian whose
covariance converges to U , where

U ,
∞∑
τ=0

HτUH
T
τ . (8)

Similarly, ϑk is a zero mean Gaussian noise whose covariance
is W = CΣCT +R, where Σ is defined in (3).

On the other hand, let us consider the system under the
replay attack, where the replayed y′k can be written as

y′k = yk−∆k = ϕk−∆k + ϑk−∆k,

Now since ∆k is unknown to the system operator, we shall
treat ϕk−∆k as a zero mean Gaussian random variable with
covariance U . As a result, y′k is a zero mean Gaussian random
variable with covariance U +W . Therefore, to detect replay
attack, we need a detector to differentiate the distribution of
yk under the following two hypotheses:
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H0: The sensor measurement yk follows a Gaussian distribu-
tion N0(ϕk,W).

H1: The sensor measurement yk follows a Gaussian distribu-
tion N1(0,U +W).

Remark 3. It is worth noticing that the watermark signal
φ0, · · · , φk are known to the system operator and detector
and the conditional distribution (conditioned on {φk}k) of
yk converges to a Gaussian distribution with mean ϕk and
covariance W .

The Neyman-Pearson detector [28] for hypothesisH0 versus
hypothesis H1 takes the following form:

Lemma 1. At time k, the Neyman-Pearson detector rejects
H0 in favor of H1 if

gk =
(
yk−ϕk

)TW−1
(
yk−ϕk

)
−yTk (W + U)

−1
yk ≥ η, (9)

where η is a threshold chosen by the system operator. Other-
wise, hypothesis H0 is accepted.

Remark 4. For simplicity, we only consider detecting replay
attack based on the current measurement yk. In principle, one
may take a moving horizon approach to design a detector, by
considering joint distribution of yk, yk−1, · · · , yk−∆t. How-
ever, the proposed methodology in this paper can be easily
extended to multiple yks case by stacking the state vector.

Remark 5. It is worth noticing that since hypothesis H0 is
time-varying due to the ϕk term, the threshold η needs to
be time-varying to ensure a constant false alarm rate. If η is
still chosen as a constant instead, then the system operator
could calculate the expected false alarm rate by numerical
integration, since ϕk is a stationary process.

The following theorem quantifies the performance of the
detector, in terms of the expected KL-divergence between
distribution N0 and N1:

Theorem 1. The expected KL divergence of distribution N0

and N1 is

E DKL (N1‖N0) = tr
(
UW−1

)
− 1

2
log det

(
I + UW−1

)
.

(10)
Furthermore, the expected KL divergence satisfies the inequal-
ity

1

2
tr
(
UW−1

)
≤ E DKL (N1‖N0)

≤ tr
(
UW−1

)
− 1

2
log
[
1 + tr

(
UW−1

)]
.

(11)

Proof. The proof is essentially the same as the proof in [17].

Remark 6. It is worth noticing that the expected KL-
divergence is a convex function of U and hence U . However,
both the upper and lower bounds of it are increasing functions
of tr(UW−1). Hence, instead of directly maximizing the
detection performance, which is computationally difficult, we
could maximize tr(UW−1), which is linear with respect to U .

Note that although the watermark signal can enable the
detection of replay attack, it also deteriorates the system
control performance. As a result, it is important to design
the signal to achieve the optimal trade-off between the control
performance loss and the detection performance. In this paper,
to quantify the performance loss, we use the following Linear
Quadratic Gaussian (LQG) metric:

J = lim
T→+∞

E

(
1

T

T−1∑
k=0

[
yk
φk

]T
X

[
yk
φk

])
, (12)

where

X =

[
Xyy Xyφ

Xφy Xφφ

]
> 0

is the weight matrix for the LQG control, which is chosen by
the system operator.

Remark 7. The LQG cost is a common choice to quantify
the performance of a system running in steady state. On the
other hand, we do not foresee any fundamental difficulty to
incorporate other performance metrics into our framework,
as long as they can be computed from the Markov parameters
Hτ .

Since yk and φk converge to a stationary process, J can be
written in an analytical form as

J = lim
k→

tr

(
X Cov

([
yk
φk

]))
= tr

(
X

[
W + U H0U
UHT

0 U

])
.

Therefore, J is an affine function of U , which can be written
as

J = J0 + ∆J = tr(XyyW) + tr(XS),

where J0 is the optimal LQG cost, and S is linear with respect
to U , being defined as

S ,

[
U H0U

UHT
0 U

]
.

Therefore, in order the achieve the optimal trade-off be-
tween the control performance and detection performance, we
can formulate the following optimization problem:

U∗ = arg max
U≥0

tr(UW−1)

subject to tr(XS) ≤ δ, (13)

where δ is a design parameter depending on how much control
performance loss is tolerable.

An important property of the optimization problem (13) is
that the optimal solution is usually a rank-1 matrix, which is
formalized by the following theorem:

Theorem 2. The optimization problem (13) is equivalent to

U∗ = arg max
U≥0

tr(UP)

subject to tr(UX ) ≤ δ, (14)
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where

P ,
∞∑
τ=0

HT
τ W−1Hτ , (15)

X ,

( ∞∑
τ=0

HT
τ XyyHτ

)
+HT

0 Xyφ +XφyH0 +Xφφ. (16)

The optimal solution to (14) is

U∗ = zzT ,

where z is the eigenvector corresponding to the maximum
eigenvalue of the matrix X−1P and zTX z = δ. Furthermore,
the solution is unique if X−1P has only one maximum
eigenvalue.

Proof. From the definition of U , we know that

tr(UW−1) =

∞∑
τ=0

tr
(
HτUH

T
τ W−1

)
=

∞∑
τ=0

tr
(
UHT

τ W−1Hτ

)
= tr (UP) .

Following similar steps as in the above proof, we have that
tr(XS) = tr(UX ). Moreover, since X > 0, we have that

X ≥ HT
0 XyyH0 +HT

0 Xyφ +XφyH0 +Xφφ

≥ Xφφ −XφyX
−1
yy Xyφ > 0.

If the optimal U∗ has rank greater than 1, then follow the same
line of argument in the proof of Theorem 7 in [18], U∗ can
be decomposed as U = α1U1 + · · ·αlUl, where the following
holds

1) αi > 0,
∑l
i=1 αi = 1.

2) Ui ≥ 0 is of rank 1 and tr(UiX ) = δ for all i.

Therefore, by the optimality of U∗, we can conclude that

tr(UP) ≤ min
i=1,...,l

tr(UiP).

However, since U∗ is a convex combination of U1, . . . , Ul, we
must have

tr(U∗P) = tr(U1P) = · · · = tr(UlP),

which shows that the rank one matrix Ui is also optimal.
In order to derive the optimal rank one U∗, it is clear

that U∗ = zzT for some z 6= 0. Hence, the optimization
problem (14) is converted to

z = arg max
z 6=0

zTPz

subject to zTX z ≤ δ.

Using the Lagrangian multipliers, one can prove that Pz =
λX z, which shows that z is the eigenvector of X−1P . If we
enumerate all eigenvectors of X−1P , it is not difficult to prove
that the maximum is achieved when z is the eigenvector corre-
sponds to the largest eigenvalue of X−1P and zTX z = δ.

B. Extension to Closed-loop Systems

Before continuing on to the next section, we would like
to discuss how to generalize the problem formulation for a
closed-loop system with a stabilizing controller. Consider the
following system discussed in [16]:

xk+1 = Axk +B(uk + φk) + wk, yk = Cxk + vk,

with the following estimator and controller:

x̂k+1 = Ax̂k +K(yk+1 − CAx̂k), uk = Lx̂k,

and LQG cost as

J = lim
T→∞

1

T
E

[
T−1∑
k=0

yTkXyyyk + (uk + φk)TXφφ(uk + φk)

]
,

where uk denotes the optimal LQG control signal.
We can redefine the state x̃k and output ỹk as

x̃k =

[
xk
x̂k

]
, and ỹk =

[
yk
uk

]
,

and the design of watermark signal in a closed-loop system
can be converted to the open-loop formulation.

It is worth noticing that in order to design the detector and
the optimal watermark signal, precise knowledge of the system
parameters is needed. However, acquiring the parameters may
be troublesome and costly. Furthermore, there may be unfore-
seen changes in the model of the system, such as topological
changes in power systems. As a result, the identified system
model may change during the system operation. Therefore,
it is beneficial for the system to “learn” the parameters and
design the detector and watermark signal in real-time, which
will be our focus in the next section.

IV. PHYSICAL WATERMARK FOR SYSTEMS WITH
UNKNOWN PARAMETERS

This section is devoted to developing an online “learning”
procedure to infer the system parameters, based on which,
we show how to design watermark signals and the optimal
detector and prove that the physical watermark and the detector
asymptotically converge to the optimal ones.

Throughout the section, we make the following assump-
tions:

Assumption 2. 1) A is diagonalizable.
2) The maximum eigenvalue of X−1P is unique.
3) The system is not under attack during the learning phase.
4) The number of distinct eigenvalues of A, which is denoted

as ñ, is known.
5) The LQG weight matrix X and the largest tolerable LQG

loss δ are known.

Remark 8. The first and second assumptions are required in
order to ensure that the optimal covariance of the watermark
signal is a differentiable function of Hτ , i.e., the problem is not
ill-conditioned. The third assumption is necessary since there
is no way to do system identification without (real) sensory
data and it is also needed to prove the asymptotic convergence
of our algorithm to the true optimal solution as this cannot
be achieved in finite time due to the inherent process and
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measurement noise. Nevertheless, we shall illustrate through
simulation, that after a certain period of learning phase, our
algorithm can approximate the optimal solution with reason-
ably well accuracy and the system can detect replay attack.
The fourth assumption is also required to prove convergence,
although we shall demonstrate in the simulation that we can
use a reduced model to approximate the system with good
accuracy. The fifth assumption should hold for all practical
cases as X and δ are design parameters chosen by the system
operator.

For the sake of legibility, we shall introduce our algorithm
first and present the theorem on the correctness of our ap-
proach in the end.

A. An Online Algorithm

In this subsection, we will present the complete algorithm in
a pseudo-code form. After that, the online “learning” scheme
will be introduced in detail.

Algorithm 1 describes our proposed online watermarking
algorithm. The notations are described later in the subsection.

First, we initialize some parameters which will be used later.
In each round of the while iteration, the optimal covariance
of the watermarking Uk,∗ based on current knowledge is
computed firstly. Based on the derived covariance, one can
update the covariance Uk by combining “exploration” and
“exploitation” term which will be described in detail later. Ac-
cording to the updated covariance, we generate the watermark-
ing signals φk and inject them to the plant. Then we collect the
sensory data yk and employ them and watermarking signals
to infer necessary system parameters Hk,τ ,Pk,Xk. Based on
the estimated parameters, one can update the Neyman-Pearson
detector ĝk. Then one can repeat the above process to identify
system parameters and design the watermarking signals as well
as the optimal detector.

A pseudo-code form for Algorithm 1 is as follows:

Algorithm 1 Online Watermarking Design
Initialization: P−1 ← I, X−1 ← Xφφ, k ← 0
Iteration:

1: while true do
2: Uk,∗ ← arg maxU≥0, tr(UXk−1)≤δ tr(UPk−1)

3: Uk ← Uk,∗ + (k + 1)−βδI
4: Generate random variable ζk ∼ N (0, I)

5: Apply watermark signal φk ← U
1/2
k ζk

6: Collect sensory data yk
7: Hk,τ ← 1

k−τ+1

∑k
t=τ ytφ

T
t−τU

−1
t−τ

8: Compute the coefficient of pk(x) by solving (23)
9: if pk(x) is Schur stable then

10: Update Pk,Xk from (24)-(29)
11: end if
12: Update ĝk from (30)
13: k ← k + 1
14: end while

Remark 9. For Algorithm 1, Pk,Xk are defined in (18), U
is the covariance of watermarking signal, and Hk,τ is defined

in (20). Step 3 is the update of the covariance of the physical
watermark in (17). All parameters will be illustrated in the
following subsections.

Then we will introduce this algorithm in detail.

Generation of the Watermark Signal φk
Let us design Uk, which can be considered as an approxi-

mation for the optimal covariance of the watermark signal U ,
as

Uk = Uk,∗ +
δ

(k + 1)β
I, (17)

where 0 < β < 1, δ is the maximum tolerable LQG loss
defined in (13), and Uk,∗ is the solution of the following
optimization problem

Uk,∗ = arg max
U≥0

tr(UPk−1),

subject to tr(UXk−1) ≤ δ, (18)

and Pk−1 and Xk−1 are the estimate of P and X matrices,
respectively, based on y0, . . . , yk−1, φ0, . . . , φk−1, both of
which are initialized as:

P−1 = I, X−1 = Xφφ.

The inference procedure of Pk and Xk for k ≥ 0 will be
provided in the further subsections.

Remark 10. Notice that the second term (k + 1)−βI on the
RHS of (17) is crucial for parameter identification. The reason
is that Uk,∗ is in general a rank 1 matrix (as is proved in
Thereom 2) and hence it does not provide persistent excitation
to the system for us to identify the necessary parameters.
Conceptually, the (k + 1)−βI term can be interpreted as an
“exploration” term, as it provide necessary excitation to the
system in order for us to infer the parameters. The Uk,∗ is
the “exploitation” term, as it is optimal under our current
knowledge of the system parameters.

At each time k, the watermark signal is chosen to be

φk = U
1/2
k ζk, (19)

where ζks are i.i.d. Gaussian random vectors with covariance
I .

Inference on Hτ

The rest of this section is devoted to inferencing the system
parameters from the collected sensory data y0, . . . , yk and
watermarks φ0, . . . , φk. We will first identify the Markov
parameters Hτ of the system.

Let us define the following quantity Hk,τ , where 0 ≤ τ ≤
3ñ− 2, as

Hk,τ ,
1

k − τ + 1

k∑
t=τ

ytφ
T
t−τU

−1
t−τ

= Hk−1,τ +
1

k − τ + 1

(
ykφ

T
k−τU

−1
k−τ −Hk−1,τ

)
,

(20)
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where Hk,τ is an estimate of Hτ at time k.

Remark 11. It is worth noticing that other methods, such as
subspace identification, may be superior for classical system
identification tasks to the method we proposed. However,
since the covariance of our watermark signal converges to
a degenerate matrix (of rank 1), it is non-trivial to analyze
the convergence properties for more advanced system iden-
tification methods, such as subspace identification, which we
shall leave as a further research direction.

It is worth noticing that the calculation of the matrices
U , W, P and X requires Hτ for all τ ≥ 0. Next we shall
show that in fact only finitely many Hτ s are needed to compute
those matrices, which requires one intermediate result:

Lemma 2. Assuming the matrix A is diagonalizable with
λ1, . . . , λñ being its distinct eigenvalues, then there exist
unique Ω1, · · · ,Ωñ, such that

Hτ =

ñ∑
i=1

λτi Ωi. (21)

Proof. Without loss of generality, we assume that A is a
diagonal matrix. As a result,

Aτ = diag(λτ1I1, λ
τ
2I2, · · · , λτñIñ),

where λi denotes the ith distinct eigenvalue of A, λτi denotes
λi to the power of τ , and Ii is the identity matrix of size ni
by ni with ni the multiplicity of λi. Hence, we have

Hτ = CAτB =

ñ∑
i=1

λτi Ωi,

with Ωi = C diag(0, . . . , 0, Ii, 0, . . . , 0)B, which completes
the proof.

Since A satisfies its own minimal polynomial p(x) =∏ñ
i=1(x − λi) = xñ + αñ−1x

ñ−1 + . . . + α0, we know that
for any i ≥ 0:

Hi+ñ + αñ−1Hi+ñ−1 + · · ·+ α0Hi = CAip(A)B = 0.
(22)

Leveraging (22), we could use H0, H1, · · · , H3ñ−2 to estimate
both λis and Ωis and thus Hτ for any τ . To this end, let us
define:  αk,0

...
αk,ñ−1

 , −Ξ−1
k

 tr(HTk,0Hk,ñ)
...

tr(HTk,ñ−1Hk,ñ)

 , (23)

where

Ξk ,

 tr(HTk,0Hk,0) · · · tr(HTk,0Hk,ñ−1)
...

. . .
...

tr(HTk,ñ−1Hk,0) · · · tr(HTk,ñ−1Hk,ñ−1)

 ,
and

Hk,i ,


Hk,i

Hk,i+1

...
Hk,i+2ñ−2

 .

Remark 12. One can prove that αk,i from (23) is the solution
of the following minimization problem:

min ‖Hk,ñ + αñ−1Hk,ñ−1 + · · ·+ α0Hk,0‖F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.

Let us denote the roots of the polynomial pk(x) = xñ +
αk,ñ−1x

ñ−1 + · · · + αk,0 to be λk,1, · · · , λk,ñ. Define a
Vandermonde like matrix Vk to be

Vk ,


1 1 · · · 1
λk,1 λk,2 · · · λk,ñ

...
...

. . .
...

λ3ñ−2
k,1 λ3ñ−2

k,2 · · · λ3ñ−2
k,ñ

 ,
where λk,i is an estimate of λi at time k and λτk,i is λk,i to
the power of τ , and we shall estimate Ωi asΩk,1

...
Ωk,ñ

 = (Vk ⊗ Im)
+

 Hk,0

· · ·
Hk,3ñ−2

 . (24)

Inference on ϕk, ϑk and W
This subsection is devoted to the inference of ϕk and ϑk

defined in (5), which corresponds to the parts of yk generated
by the watermark signal and noise respectively. We will further
infer the covariance W of ϑk.

Let us define

ϕ̂k ,
ñ∑
i=1

ϕ̂k,i, (25)

with ϕ̂k,i = λk,iϕ̂k−1,i + Ωk,iφk, and ϕ̂−1,i = 0. As a result,
we can estimate ϑk as

ϑ̂k , yk − ϕ̂k. (26)

The covariance of ϑk can be estimated as

Wk ,
1

k + 1

k∑
t=0

ϑ̂tϑ̂
T
t . (27)

Inference on P , X , U and gk
Finally we can derive an estimation of the P and X matri-

ces, which are required to compute the optimal covariance U
of the watermark signal, given by

Pk =

∞∑
τ=0

(
ñ∑
i=1

λτk,iΩk,i

)T
W−1
k

(
ñ∑
i=1

λτk,iΩk,i

)

=

∞∑
τ=0

 ñ∑
i=1

ñ∑
j=1

λτk,iλ
τ
k,jΩ

T
k,iW−1

k Ωk,j


=

ñ∑
i=1

ñ∑
j=1

( ∞∑
τ=0

(λk,iλk,j)
τ

)
ΩTk,iW−1

k Ωk,j

=
ñ∑
i=1

ñ∑
j=1

1

1− λk,iλk,j
ΩTk,iW−1

k Ωk,j , (28)
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where (28) is derived from the summation of geometric series,
and

Xk =

∞∑
τ=0

(
ñ∑
i=1

λτk,iΩk,i

)T
Xyy

(
ñ∑
i=1

λτk,iΩk,i

)

+

ñ∑
i=1

ΩTk,iXyφ +Xφy

ñ∑
i=1

Ωk,i +Xφφ

=

ñ∑
i=1

ñ∑
j=1

1

1− λk,iλk,j
ΩTk,iXyyΩk,j +

ñ∑
i=1

ΩTk,iXyφ

+Xφy

ñ∑
i=1

Ωk,i +Xφφ. (29)

The Neyman-Pearson detection statistics gk can be approx-
imated by

ĝk = (yk − ϕ̂k)
T W−1

k (yk − ϕ̂k)− yTk (Wk + Uk)
−1
yk,

(30)

where

Uk =

∞∑
τ=0

(
ñ∑
i=1

λτk,iΩk,i

)
Uk,∗

(
ñ∑
i=1

λτk,iΩk,i

)T

=

ñ∑
i=1

ñ∑
j=1

1

1− λk,iλk,j
Ωk,iUk,∗Ω

T
k,j . (31)

Remark 13. For the proposed online algorithm, the system
identification and watermark design are tightly coupled. As is
commented in Remark 10, the watermarking-based replay at-
tack detection requires the injection of a rank-1 watermarking
signal (assuming it is performed optimally). On the other hand,
persistency of excitation is required for system identification,
i.e., the injected signal needs to be full rank. As a result, we
carefully design the covariance of the injected signal to be the
“optimal” rank-1 covariance matrix on the current knowledge
of the system, plus a diminishing factor (k + 1)−βI , and we
further prove in this paper that this additional term, although
vanishing asymptotically, provides us with enough information
to perfectly identify the necessary parameters of the system.

Remark 14. It is worth noticing that comparing to an
approach with off-line system identification first and then wa-
termarking design later, our approach provides the following
advantages:

1) Theoretically speaking, finite-time system identification
cannot identify the system parameters precisely and hence
the watermarking scheme will not be optimal if the system
identification process is stopped.

2) In practice, the control system could slowly change due
to various reasons (e.g., components wear out), so we
need to adjust the parameters continuously.

3) Moreover, for many practical control systems, a model of
the system is not available. It is often too expensive to
stop the system operation and to perform off-line system
identification.

We would like to further point out that the classical system
identification procedure can be easily integrated to our ap-
proach, by providing better estimation of P and X in the
initialization step in Algorithm 1. Hence, classical system
identification approach complements our algorithm very well.

B. Algorithm Properties

The following theorem establishes the convergence of Uk,∗
and gk, the proof of which is reported in the appendix for the
sake of legibility.

Theorem 3. Assuming that A is strictly stable and Assumption
2 holds. If 0 < β < 1, then for any ε > 0, the following limits
hold almost surely:

lim
k→∞

Uk,∗ − U∗
k−γ+ε

= 0, lim
k→∞

ĝk − gk
k−γ+ε

= 0, (32)

where γ = (1 − β)/2 > 0. In particular, Uk,∗ and ĝk almost
surely converge to U∗ and gk respectively.

From the definition of Uk = Uk,∗ + (k + 1)−βδI , we
immediately have the following corollary:

Corollary 1. Assuming that A is strictly stable and Assump-
tion 2 holds. If 0 < β < 1, then for any ε > 0, the following
limit holds almost surely:

lim
k→∞

Uk − U∗
k−min(γ,β)+ε

= 0. (33)

Remark 15. It is worth noticing that (32) implies that both
Uk,∗ − U∗ and ĝk − gk are of the order O(k−γ+ε) as k goes
to infinity. Hence, the convergence rate γ is maximized when
β → 0+, which corresponds to the case where the exploration
term (k+1)−βδI in Uk stays constant. However, although this
will maximize the performance for the inference algorithm,
the covariance Uk of the watermark signal φk will not
converge to the true optimal U∗. In order to achieve “fastest”
convergence rate of Uk, we need to choose the decay rate for
the exploration term to be β = 1/3 = arg maxβ(γ, β).

We would also like to point out that Theorem 3 only provides
an upper bound for the almost sure convergence rate and we
plan to investigate the exact convergence rate in our future
work. It is also interesting to see if faster convergence can
be achieved by using more advanced system identification
techniques.

V. SIMULATION RESULT

In this section, the performance of the proposed algorithm
is evaluated. We will apply the proposed online “learning”
approach to a numerical example and an industrial process,
Tennessee Eastman Process (TEP).

A. A Numerical Example

First we choose m = 3, n = 5, p = 2 and A, B, C are all
randomly generated, with A being stable. It is assumed that
X in (12), the covariance matrices Q and R are all identity
matrices with proper dimensions. We assume that δ in (14) is
equal to 10% of optimal LQG cost J0. Fig. 2 shows relative
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Fig. 2. Relative error of Uk,∗ for different β. The red solid line denotes the
relative error of Uk,∗ when β = 0. The blue solid line is the relative error
of Uk,∗ when β = 1/3.

error ‖Uk,∗ − U∗‖F /‖U∗‖F of the estimated Uk,∗ v.s. time k
for different βs.

From Fig 2, one can see that the estimator error converges
to 0 as time k goes to infinity and the convergence approxi-
mately follows a power law. From Theorem 3, we know that
Uk,∗ − U∗ ∼ O(k−γ+ε), where γ = (1 − β)/2. However,
from Fig 2, it seems that the convergence speed of the error
for different β is comparable. Notice that Theorem 3 only
provides an upper bound for the convergence rate. As a result,
it would be interesting to quantify the exact impact of β on
the convergence rate, which we shall leave as a future research
direction.

Now we consider the detection performance of our online
watermark signal design, after an initial inference period,
where no attack is present. It is assumed that the attacker
records the sensor readings from time 104+1 to 104+100 and
replays them to the system from time 104 + 101 to 104 + 200.
Fig 3 shows the trajectory of the Neyman-Pearson statistic gk
and our estimate ĝk of gk for one simulation. Notice that ĝk
can track gk with high accuracy. Furthermore, both ĝk and gk
are significantly larger when the system is under replay attack
(after time 104 + 101). Hence one can conclude that even
without parameter knowledge, we can successfully estimate
gk and detect the presence of the replay attack.

B. TEP Example

Tennessee Eastman Process (TEP) is a commonly used
process control system proposed by Downs and Vogel in [29].
In this simulation, we adopt a simplified version of TEP
from [30], as follows:

ẋ = Ax+Bu,

y = Cx,

where A,B and C are constant matrices 1.

1For more details about this dynamic model, please refer to Appendix I
in [30].
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−20
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ĝk

Fig. 3. The detection statistics v.s. time. The black solid line with circle
markers is the true Neyman-Pearson statistics gk , assuming full system
knowledge. The red dashed line with cross markers denotes our estimated
ĝk .

This system simulates a MIMO system of order n = 8
with p = 4 inputs and m = 10 outputs. We discretize the
system using the control system toolbox in MATLAB, by
selecting a sample time of 0.6s. Again, we choose X in (12),
the covariance matrices Q and R to be identity matrices with
proper dimensions. We assume that δ in (14) is equal to 5%
of J0, and β = 1/3. In this simulation, we assume that we
do not know the dimension of the state space, which is 8,
and instead we underestimate it by assuming that A only has
ñ = 5 distinct eigenvalues.

Fig. 4 illustrates the relative error ‖Uk,∗ − U∗‖F /‖U∗‖F
after running the system for roughly 1 week (106 × 0.6s ≈
0.992week). Fig 5 illustrates the NP statistics gk and the
estimated NP statistics ĝk, assuming that the adversary collects
the measurement from 106 + 1 to 106 + 100 and replays them
to the system from time 106 + 101 to 106 + 200. One can see
that although we underestimate the dimensions of the system,
our algorithm can still achieve a high accuracy.

100 101 102 103 104 105 106

10−2

10−1

100

k

‖U
k
∗
−
U
∗‖
F
/
‖U
∗‖
F

Fig. 4. Relative error of Uk,∗.

VI. CONCLUSION

In this paper, an algorithm that can simultaneously generate
the watermarking signal and infer the system parameters
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Fig. 5. The detection statistics v.s. time. The black solid line with circle
markers is the true Neyman-Pearson statistics gk , assuming full system
knowledge. The red dashed line with cross markers denotes our estimated
ĝk .

is proposed. We prove that our algorithm converges to the
optimal one and characterize an upper bound for the almost
surely convergence rate. For future works, we would like to
quantify the exact convergence rate, as well as exploring other
system identification methods and prove their convergence. It
is of interest to study secure control in other cases, such as
batach-operating process. We are also interested in adversarial
learning when the sensor data is compromised.

APPENDIX A
PROOF OF THEOREM 3

The whole appendix is devoted to proving Theorem 3. We
shall present several preliminary results first and then proceed
with the proof of Theorem 3.

Preliminary Results

To simplify notations, for a random variable (vector, or
matrices) xk, we denote that xk ∼ C(α) if for all ε > 0,
we have that xk ∼ O(kα+ε), i.e.,

lim
k→∞

‖xk‖
kα+ε

a.s.
= 0.

Notice that xk ∼ O(kα) implies that xk ∼ C(α), but
the reverse is not necessarily true2. The following lemma
establishes some basic properties of C(α) functions:

Lemma 3. Assuming that xk ∼ C(α) and yk ∼ C(β), with
α ≥ β, then the following statements hold:

1) xk+yk ∼ C(α), xk×yk ∼ C(α+β), and (xk+∆xk)(yk+
∆yk) − xkyk ∼ C(max{αβ′, α′β, α′β′}), suppose that
∆xk ∼ C(α′) and ∆yk ∼ C(β′).

2)
∑k
t=0 xt ∼ C(α+ 1).

3) Suppose f is differentiable at 0 and α < 0, then

f(xk)− f(0) ∼ C(α).

4) sk ∼ C(α), with

sk = ρsk−1 + xk, s−1 = 0,

2To see a counterexample, log k ∼ C(0), but log k is not of the order
O(k0).

where |ρ| < 1.
5) Assume that Xk is a matrix and Xk ∼ C(α). Let

Sk = ASk−1B +Xk, S−1 = 0,

where A,B are matrices of proper dimensions. Then
Sk ∼ C(α) if BT ⊗A is strictly stable.

6) ζk ∼ C(0), where {ζk} is a sequence of i.i.d. Gaussian
random variables, i.e., ζk ∼ N (µ̄, Z).

Proof. The first three statements can be trivially proved and
hence we only focus on the last three statements.

4) Since xk ∼ C(α), it is easy to see that for any ε > 0,

sup
k

|xk|
kα+ε

= Ma(ε) <∞. a.s.

As a result,

|sk|
kα+2ε

≤ 1

kε

k∑
i=1

∣∣ρi−1
∣∣ ∣∣∣xk−i
kα+ε

∣∣∣ ≤ 1

kε
Ma(ε)

1− |ρ|
,

which almost surely converges to 0 as k goes to ∞. As
a result, sk ∼ C(α).

5) For the last statement, notice that

vec(Sk) =
(
BT ⊗A

)
vec(Sk−1) + vec(Xk).

Therefore, the argument that Sk ∼ C(α) follows the same
line of proof as the fourth statement.

6) We only need to prove for the case where ζk follows the
standard normal distribution. The high dimensional case
can then be proved by checking each entry of ζk with
proper scaling and shifting. For any ε, φ > 0, we have

P

(
|ζk|
kε

> φ

)
=

√
2

π

∫ ∞
φkε

exp(−x2/2)dx.

Suppose that k is large enough, such that φkε > 1, then
we have∫ ∞

φkε
exp(−x2/2)dx ≤

∫ ∞
φkε

exp(−x2/2)× xdx

= exp(−φ2k2ε/2),

and

lim
k→∞

k2 exp(−φ2k2ε/2) = lim
x→∞

(
2x

φ2

)1/ε

exp(−x) = 0.

As a result, using direct comparison test for infinite series,
we can prove that

∞∑
k=1

P

(
|ζk|
kε

> φ

)
<∞,

which further implies (by Borel-Cantelli Lemma), that

lim sup
k→∞

|ζk|
kε
≤ φ, a.s.

Since φ can be arbitrarily small, ζk/kε → 0 almost surely,
which finishes the proof.

Let {Fk} be a filtration of sigma algebras and {Mk} be a
matrix-valued stochastic process that is adapted to the filtration
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{Fk}, we call {Mk} a (matrix-valued) matingale (with respect
to the filtration {Fk}) if the following equality holds for all t:

E (Mk+1|Fk) = Mk.

For the rest of the paper, we shall assume that the filtra-
tion Fk is the σ-algebra generated by the random variables
{x−1, φ0, · · · , φk, w0, · · · , wk, v0, · · · , vk}. Now we have the
following lemma to establish a strong law for matrix-valued
martingale:

Lemma 4. If Mk = Φ0 + Φ1 + · · · + Φk is a matrix-valued
martingale such that

E ‖Φk‖2 ∼ C(β),

where 0 ≤ β < 1, then Mk/k converges to 0 almost surely.
Furthermore,

Mk

k
∼ C

(
β − 1

2

)
.

Proof. Let Φk,ij (Mk,ij) be the (i, j)-th entry of the matrix Φk
(Mk). It is easy to prove that {Mk,ij} is a scalar martingale
(adapted the same filtration {Fk}) and since3

Φ2
k,ij ≤ ‖Φk‖2,

we have that EΦ2
k,ij ∼ C(β). For simplicity, let us define

κ = (β + 1)/2. One can easily verify that for any ε > 0 and
large enough i, the following inequalities hold:

i1−1
(
k−κ−ε

)2−2
= 1,

and
∞∑
k=i

(
k−κ−ε

)2
k−1 ≤

∫ ∞
i−1

x−2κ−2ε−1dx

=
1

2κ+ 2ε
(i− 1)

−2κ−2ε ≤ 1

κ

(
i−κ−ε

)2
.

The last inequality is true since ε > 0 and for large enough i,
(i− 1)/i→ 1.

Finally, one can prove the following equality(
k−κ−ε

)2 EΦ2
k,ij = k−β−2ε−1EΦ2

k,ij

= k−1−εEΦ
2
k,ij

kβ+ε
∼ O(k−1−ε),

which implies that
∞∑
k=1

(
k−κ−ε

)2 EΦ2
k,ij <∞.

As a result, by Lemma 1 in [31], we can deduce that

lim
k→∞

Mk,ij/k

kκ−1+ε
= lim
k→∞

k−κ−εMk,ij
a.s.
= 0. (34)

Notice that (34) is true for all entries of the matrix Mk. There-
fore, Mk/k ∼ C(κ−1), with κ−1 = (β+1)/2−1 = (β−1)/2.
Since β < 1, Mk/k converges to 0 almost surely.

We are now ready to prove Theorem 3, which requires
several intermediate steps.

3This is due the fact that ‖A‖ = sup‖u‖=‖v‖=1 |uTAv| ≥ |eTi Aej |.

Boundedness of Uk
Lemma 5. Uk is upper and lower bounded by:

δ(k + 1)−βI ≤ Uk ≤ δ
((
Xφφ −XφyX

−1
yy Xyφ

)−1
+ I
)
.

(35)

Proof. The first inequality is trivially true since Uk = Uk,∗ +
δ(k + 1)−βI . For the second inequality, notice that

Xk ≥

(
ñ∑
i=1

Ωk,i

)T
Xyy

(
ñ∑
i=1

Ωk,i

)
+

ñ∑
i=1

ΩTk,iXyφ

+Xφy

ñ∑
i=1

Ωk,i +Xφφ

≥ Xφφ −XφyX
−1
yy Xyφ.

As a result, tr(Uk,∗Xk) ≤ δ implies that

Uk,∗ ≤ δX−1
k = δ

(
Xφφ −XφyX

−1
yy Xyφ

)−1
,

and

Uk ≤ Uk,∗ + δI = δ
((
Xφφ −XφyX

−1
yy Xyφ

)−1
+ I
)
.

Convergence of Hk,τ

Lemma 6. Hk,τ − Hτ ∼ C(−γ), with γ = (1 − β)/2. In
particular, Hk,τ converges to Hτ almost surely.

Proof. It is easy to see that yk and Uk+1 are measurable w.r.t.
Fk. Furthermore, let k1, k2 ≥ 0 be two time indices, then it
is easy to prove that

E(φk1φ
T
k2+1|Fk2) =

{
Uk2+1 if k1 = k2 + 1

0 otherwise
,

E(wk1φ
T
k2+1|Fk2) = 0, E(vk1φ

T
k2+1|Fk2) = 0, (36)

which, combined with (4), implies that

E
(
yk+τφ

T
k U
−1
k |Fk−1

)
= Hτ . (37)

Next we shall compute the expectation of ‖yk+τφ
T
k U
−1
k ‖2.

Notice that from (19), φk = U
1/2
k ζk, where ζk follows the

standard normal distribution. Hence,

‖yk+τφ
T
k U
−1
k ‖

2 = ‖yk+τφ
T
k U
−2
k φky

T
k+τ‖

≤ ‖yk+τ‖2‖ζk‖2‖U−1
k ‖ ≤ δ(k + 1)β‖yk+τ‖2‖ζk‖2.

The last inequality is true due to (35). As a result, by Cauchy-
Schwarz inequality,

E‖yk+τφ
T
k U
−1
k ‖

2 ≤ δ(k + 1)β
√

E‖yk+τ‖4
√

E‖ζk‖4.

Notice that ‖ζk‖ is χ-distributed with p degree of freedom,
which implies that E‖ζk‖4 = p(p+2). On the other hand, one
can prove that supk E‖yk‖4 is bounded since by (35), Uk is
upper bounded. As a result, we prove that

E‖yk+τφ
T
k U
−1
k ‖

2 ∼ C(β),
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which further implies that

E‖yk+τφ
T
k U
−1
k −Hτ‖2 ≤ E

(
‖yk+τφ

T
k U
−1
k ‖+ ‖Hτ‖

)2
≤ E

(
2‖yk+τφ

T
k U
−1
k ‖

2 + 2‖Hτ‖2
)
∼ C(β). (38)

As a result, by (37), one can prove that the following stochastic
process is a matrix-valued martingale

Sτ,i(k + 1) = Sτ,i(k) +
[
y(k+1)τ̃+iφkτ̃+i+1U

−1
kτ̃+i+1 −Hτ

]
(39)

for the filtration Fkτ̃+i, where τ̃ = τ + 1, and 0 ≤ i ≤ τ .
Now by (38) and Lemma 4, we know that

Sτ,i(k)

k
∼ C(−γ).

From the definition of Sτ,i(k), one can see that for large
enough k,

Hk,τ −Hτ =

τ∑
i=0

ki
k
× Sτ,i(ki)

ki
. (40)

where ki = max{t ∈ N : tτ̃ + i ≤ k}. Notice that ki ≥ 0
and

∑
ki = k. Hence, the estimation error of Hk,τ −Hτ is a

convex combination of Sτ,is. As a result, for any ε > 0

‖Hk,τ −Hτ‖ ≤ max
0≤i≤τ

‖Sτ,i(ki)‖
ki

∼ O(k−γ+ε
i ), (41)

Notice that when k is large enough, k/ki → τ , which implies
that Hk,τ−Hτ ∼ C(−γ). The a.s. convergence can be trivially
proved by the fact that γ > 0 is positive.

Convergence of λk,i and Ωk,i

Notice that due to the convergence of Hk,τ to Hτ , we have
that Ξk converges to Ξ, where

Ξ ,

 tr(HT0H0) · · · tr(HT0Hñ−1)
...

. . .
...

tr(HTñ−1H0) · · · tr(HTñ−1Hñ−1)

 ,
with

Hi ,

 Hi

...
Hi+2ñ−2

 .
We shall first prove that Ξ is invertible. Suppose that there

exists α̃ = [α̃0, . . . , α̃ñ−1]
T , such that Ξα̃ = 0, then

0 = α̃TΞα̃ =

∥∥∥∥∥
ñ−1∑
i=0

Hiα̃i

∥∥∥∥∥
2

F

,

which further implies that CAip̃(A)B = 0 for all 0 ≤ i ≤
2n − 2, and p̃(x) = α̃ñ−1x

ñ−1 + · · · + α̃0. Hence, we know
that  C

...
CAñ−1

 p̃(A)
[
B · · · Añ−1B

]
= 0.

By the fact that (A,B) is controllable and (A,C) is ob-
servable, p̃(A) must be 0. However, since p(x) is minimal

polynomial of A, p̃(x) must be constantly 0, which proves
that α̃ = 0 and Ξ is invertible.

Let us denote αis as the coefficients of the minimal polyno-
mial p(x) = xñ + αñ−1x

ñ−1 + · · ·+ α0 of A, i.e., the monic
polynomial with minimum degree. As a result, we have

Hi+ñ + αñ−1Hi+ñ−1 + · · ·+ α0Hi = CAip(A)B = 0.
(42)

Hence, one can prove that, α0

...
αñ−1

 = −Ξ−1

 tr(HT0Hñ)
...

tr(HTñ−1Hñ)

 , (43)

which, combined with the fact that Hk,τ − Hτ ∼ C(−γ)
and Lemma 3.3, proves that αk,i − αk ∼ C(−γ). Since
all the roots of the polynomial p(x) are distinct, we can
prove (see [32]) that λk,is are differentiable functions of
αk,is at a neighborhood of αi, which further proves that
λk,i − λi ∼ C(−γ).

Now let us define V to be

V ,


1 1 · · · 1
λ1 λ2 · · · λñ
...

...
. . .

...
λ3ñ−2

1 λ3ñ−2
2 · · · λ3ñ−2

n

 .
Since p(x) is the minimal polynomial of A and A is diago-
nalizable, the roots λis of p(x) are distinct, which proves that
V is of full column rank, i.e., rank(V ) = ñ. Therefore,

rank(V ⊗ Im) = rank(V )× rank(Im) = ñm,

which implies that V ⊗ Im is of full column rank.
Therefore, by Lemma 2,Ω1

...
Ωñ

 = (V ⊗ Im)
+

 H0

· · ·
H3ñ−2

 . (44)

Hence, by Lemma 3.3, Ωk,i − Ωi ∼ C(−γ).

Convergence of ϕ̂k, ϑ̂k and Wk

First we need to prove that ϕ̂k−ϕk ∼ C(−γ), which holds
as long as ϕ̂k,i − ϕk,i ∼ C(−γ) for all i, where

ϕk,i = λiϕk−1,i + Ωiφk, ϕ−1,i = 0.

Notice that the error between ϕ̂k,i and ϕk,i satisfies the
following recursive equation:

ϕk+1,i − ϕ̂k+1,i = (λi − λk,i)ϕk,i + λk,i(ϕk,i − ϕ̂k,i)
+ (Ωi − Ωk,i)φk.

For any ε > 0, we have

‖ϕk+1,i − ϕ̂k+1,i‖
(k + 1)−γ+2ε

≤ |λk,i|
‖ϕk,i − ϕ̂k,i‖
k−γ+2ε

+
|λi − λk,i|
k−γ+ε

‖ϕk,i‖
kε

+
‖Ωi − Ωk,i‖
k−γ+ε

‖φk‖
kε

.

Notice that φk = U
1/2
k ζk. Since ζk ∼ C(0) by Lemma 3.6,

and Uk is upper bounded by Lemma 5, φk ∼ C(0). Thus,
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ϕk,i ∼ C(0) by Lemma 3.4. Furthermore, since λk,i − λi ∼
C(−γ) and Ωk,i − Ωi ∼ C(−γ) , for any ε1 > 0, there exists
K (possibly random), such that for any k ≥ K, the following
inequalities hold almost surely,

|λi − λk,i| ≤ ε1,
|λi − λk,i|
k−γ+ε

‖ϕk,i‖
kε

+
‖Ωi − Ωk,i‖
k−γ+ε

‖φk‖
kε
≤ ε1.

Therefore, for k ≥ K, we have

‖ϕk+1,i − ϕ̂k+1,i‖
(k + 1)−γ+2ε

≤ (|ρ|+ ε1)× ‖ϕk,i − ϕ̂k,i‖
k−γ+2ε

+ ε1. a.s.

Now since |ρ| < 1, we can choose ε1 small enough such that
|ρ|+ ε1 < 1, therefore,

lim sup
k→∞

‖ϕk,i − ϕ̂k,i‖
k−γ+2ε

≤ ε1
1− |ρ| − ε1

. a.s.

Hence, ‖ϕk,i− ϕ̂k,i‖/k−γ+3ε a.s.→ 0, which proves that ϕk,i−
ϕ̂k,i ∼ C(−γ).

Lemma 7.

1

k + 1

k∑
t=0

ϑtϑ
T
t −W ∼ C(−0.5), (45)

where ϑk ,
∑k
t=0 CA

twk−t + vk + CAk+1x−1.

Proof. Let us define function A : Rn×n → Rn×n, such that
for any symmetric matrix X ∈ Sn×n,

A(X) = X +AXAT +A2XA2T + · · · ,

For non-symmetric X ∈ Rn×n, we define

A(X) = A
(
X +XT

2

)
.

One can prove that

A(X)−AkA(X)AkT =

k−1∑
i=0

Ai
X +XT

2
AiT .

To simplify notations, let us define w−1 = x−1. By mathe-
matical induction,

∑k
t=0 ϑtϑ

T
t can be written as

k∑
t=0

ϑtϑ
T
t =Mk − CANkATCT , (46)

where

Mk =Mk−1 + Πk (47)

Nk = ANk−1A
T + 2A

((
k∑

t=−1

Ak−twt

)
wTk

)
−A(wkw

T
k ).

(48)

with

Πk = vkv
T
k + vk

(
k∑

t=−1

CAk−twt

)T
+

(
k∑

t=−1

CAk−twt

)
vTk

+ 2CA

((
k∑

t=−1

Ak−twt

)
wTk

)
CT − CA

(
wkw

T
k

)
CT ,

and initial condition

N−1 = A
(
x−1x

T
−1

)
,M−1 = CAN−1A

TCT . (49)

One can then prove that

E(Πk|Fk−1) =W, E‖Πk −W‖2 ∼ O(1).

Hence,Mk−kW is a martingale andMk/k−W ∼ C(−0.5)
by Lemma 4. On the other hand, for Nk, since A⊗A is stable,
Nk ∼ C(0) by Lemma 3, which proves that

1

k + 1

k∑
t=0

ϑtϑ
T
t −W ∼ C(−0.5).

Now we can rewrite Wk −W as

Wk −W =

(
1

k + 1

k∑
t=0

ϑtϑ
T
t −W

)

− 1

k + 1

k∑
t=0

(
ϑt(φ̂t − φt)T + (φ̂t − φt)ϑTt

)
+

1

k + 1

k∑
t=0

(φ̂t − φt)(φ̂t − φt)T ,

By Lemma 3,Wk−W ∼ C(max{−0.5,−γ,−2γ}) = C(−γ).

Convergence of the Rest

By Lemma 3.3, one can prove that Pk − P , Xk − X are
all of the class C(−γ), as they are differentiable functions of
λk,i, Ωk,i and Wk. Therefore, Uk,∗−U∗ ∼ C(−γ) since Uk,∗
is a differentiable function of Pk and Xk at a neighborhood
of P and X (see [32]).

Hence, one can prove that Uk − U ∼ C(−γ), as Uk is a
differentiable function of λk,i, Ωk,i and Uk,∗.

Finally we prove that ĝk−gk ∼ C(−γ) due to Lemma 3.1.
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