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Local Decomposition of Kalman Filters and Its
Application for Secure State Estimation

Xinghua Liu, Yilin Mo∗, Emanuele Garone

Abstract—This technical note is concerned with the secure state
estimation problem of a linear discrete-time Gaussian system in
the presence of sparse integrity attacks. m sensors are deployed to
monitor the state and p of them can potentially be compromised
by an adversary, whose data can be arbitrarily manipulated
by the attacker. We show that the optimal Kalman estimate
can be decomposed as a weighted sum of local state estimates.
Based on these local estimates, we propose a convex optimization
based approach to generate a more secure state estimate. It is
proved that our proposed estimator coincides with the Kalman
estimator with a certain probability when all sensors are benign.
Besides, we establish a sufficient condition under which the
proposed estimator is stable against the (p,m)-sparse attack.
A numerical example is provided to validate the secure state
estimation scheme.

Index Terms—Security, Kalman filter, Cyber-physical systems,
Optimization.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are now playing a crucial
role in many areas of modern society [1], [2], [3], [4]. The use
of cyber components, though enabling more efficient design
and flexible implementation, can make the CPS vulnerable to
potentially devastating cyberattacks launched by insiders or
resourceful foes. For example, CarShark [5], Stuxnet virus [6]
and Dragonfly virus [7]. Due to the stealthiness of the attacks,
system operators usually cannot discover attacks in time,
which may lead to the severe economy damage and even the
loss of human lives. The aforementioned incidents indicate
that enhancing the security of CPS is an urgent issue. Hence,
in recent years the importance of security in CPS has been
acknowledged and significant efforts have been devoted into
developing strategies against attacks.

In the literature, several contributions have been proposed
for attack detection and attack-resilient control. Sandberg et
al. [8] considered how to find a sparse stealthy input, which
enables the adversary to launch an attack with a minimum
number of compromised sensors. Kim et al. [9] studied a so-
called framing attack that can mislead the bad data detector
to mistakenly remove critical measurements, without which
the network is unobservable. For a dynamical system, detect-
ing malicious components via fault detection and isolation
based methods has been extensively studied in [10]. From
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the viewpoint of attack-resilient control, Yuan et al. [11]
proposed a coupled design framework of intrusion detection
mechanisms and provided a robust control policy against DoS
attacks. Ahmet et al. [12] investigated event-triggered control
against jamming attacks, and presented sufficient conditions
for almost sure asymptotic stabilization. For the design of
state estimators, Teixeira et al. [13] analyzed the effects of
possible deceptions attacks for state estimators and proposed
some policies to design deception attacks for both linear
and nonlinear state estimation. Qi et al. [14] considered the
event-based attack strategy against remote state estimation.
Recently, Mo and Sinopoli [15] proposed an estimator that has
minimum mean square error against the worst-case attacks.
However, the problem of designing a secure state estimator
for a dynamic system is much more challenging because the
bias injected by an adversary can accumulate in the dynamic
state estimation and give rise to a large or even unbounded
estimation error [16], [17].

To overcome the problem of bias accumulation in the
dynamic state estimation, Fawzi et al. [18] proposed a moving
horizon approach, where the estimator only uses the mea-
surements from time k − T + 1 to time k to estimate the
current state x(k) and effectively reduced the dynamic state
estimation problem into a static estimation problem. Pajic
et al. [19], [20] further developed this approach to physical
systems subject to random or bounded noise. Notice that the
static estimation problem can be solved efficiently using `1
relaxation by exploiting the sparseness of the bias injected by
the adversary. Shoukry et al. [21] presented a novel algorithm
that uses a satisfiability modulo theory approach to harness the
complexity of secure state estimation. However, the sensory
data before time k − T are discarded in the moving horizon
approach, which may result in a degradation of the estimation
performance. In view of this issue, Mo et al. [22] considered
estimating state x(k) ∈ Rn from measurements subject to a
(p,m)-sparse attack, and constructed a local state estimator
for each sensor and the historical sensory data can be stored
in the local state estimate, which is illustrated in the following
Fig. 1.

Motivated by the above discussions, in this technical note,
we assume the attacker can only attack up to p < m sensors
due to the resource limitation, and further investigate the
problem of designing a secure state estimator for a linear time-
invariant Gaussian system against the (p,m)-sparse attack.
In contrast to the assumption in our preliminary works [22],
[23], we remove a restrictive condition on the system matrices
and develop a framework to implement the decomposition of
Kalman filter for the more general case of linear systems. The
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Fig. 1. The information flow of the proposed filter.

main merit of the proposed estimator design are twofold:

1) We prove that our estimator will recover the optimal
Kalman estimate with a certain probability, when all
sensors are benign.

2) Subject to p corrupted sensors, we provide a sufficient
condition on the stability of our estimator.

The rest of this technical note is organized as follows:
Section II formulates the problem formulation. In Section III,
we prove that the Kalman estimator can be decomposed as a
linear combination of local estimators. A convex optimization
based approach is proposed in Section V to derive a secure
state estimate from local estimates. The performance of the
proposed estimator is illustrated via a numerical example in
Section VI and finally Section VII concludes the paper.

Notation: Throughout this technical note, we adopt the
following notations. For a set X , |X| means the cardinal
number of the set X . I is the identity matrix with suitable
dimensions. The superscripts > and −1 denote matrix trans-
position and matrix inverse, respectively. Rn and Cn denote
the set of n-dimensional real vectors and complex vectors,
respectively. Rm×n (Cm×n) is the set of all m × n real
(complex) matrices. For the matrix A ∈ Cm×n, AH is the
conjugate transpose. ‖v‖ is the Euclidean norm of vector v,
i.e., ‖v‖ = (v>v)

1
2 , while ‖A‖ is spectral norm of matrix

A, i.e., ‖A‖ = [λmax(A>A)]
1
2 . Matrices, if their dimensions

are not explicitly stated, are assumed to have compatible
dimensions for algebraic operations.

II. PROBLEM FORMULATION

This section formulates the secure state estimation problem
for linear Gaussian system. The notation developed below is
used in the remainder of this paper.

Let a linear time-invariant system

x(k + 1) = Ax(k) +Bw(k), (1)

where x(k) ∈ Rn is the system state at time k, w(k) ∈ Rs is
the Gaussian process noise at time k, and x(0) is the initial
state. w(k), x(0) are assumed to be independent Gaussian
random variables, i.e., x(0) ∼ N (0,Σ), w(k) ∼ N (0, Q).
A ∈ Rn×n and B ∈ Rn×s are constant matrices. The
following assumption is considered throughout the rest of the
paper:

Assumption 1. The matrix A is nonsingular.

We consider that m sensors are deployed to monitor the
physical system (1). The measurement from the i-th sensor at
time k is:

yi(k) = Cix(k) + vi(k) + ai(k), (2)

where Ci is a non-zero row vector with proper dimensions,
yi(k) ∈ R is a measurement at time k, and vi(k) ∈ R is
Gaussian measurement noise. The scalar ai(k) denotes the
possible bias injected by an adversary. For a benign sensor i,
ai(k) = 0 for all k, whereas for a compromised sensor i, ai(k)
can be arbitrary. Let S = {1, 2, · · · ,m} be the index set of
all sensors, then a (p,m)-sparse attack is defined as follows.

Definition 1. For an index set I ⊆ S, the complement
set of I is denoted as Ic = S \ I, an attack a(k) =[
a>1 (k) · · · a>m(k)

]>
is called the (p,m)-sparse attack if the

following conditions are satisfied: (i) ‖ai(k)‖ = 0, ∀i ∈ Ic;
(ii) |I| ≤ p.

We further assume that the set of compromised sensors
remains fixed over time. Define the collection of all possible
index sets of malicious sensors as C , {I : I ⊆ S, |I| = p}.

By defining the aggregated vectors

y(k) ,
[
y>1 (k) · · · y>m(k)

]>
,

C ,
[
C>1 · · · C>m

]>
,

v(k) ,
[
v>1 (k) · · · v>m(k)

]>
, (3)

we can rewrite (2) as

y(k) = Cx(k) + v(k) + a(k). (4)

where v(k) ∈ Rm is a vector of measurement noise. It is
assumed that v(k) ∼ N (0, R) with R > 0 is i.i.d and inde-
pendent of the noise process {w(k)} and the initial condition
x(0). Without loss of generality, in this note we assume (A,C)
to be observable. In the case where (A,C) is not observable,
we can always perform a Kalman decomposition and consider
only the observable space.

If all sensors are benign, i.e., a(k) = 0 for all k, the optimal
state estimator is the classical Kalman filter:

x̂(k) = x̂(k|k − 1) +K(k) [y(k)− Cx̂(k|k − 1)] ,

P (k) = P (k|k − 1)−K(k)CP (k|k − 1),

where

x̂(k + 1|k) = Ax̂(k),

P (k + 1|k) = AP (k)A> +BQB>,

K(k) = P (k|k − 1)C>(CP (k|k − 1)C> +R)−1,

with initial condition x̂(0| − 1) = 0, P (0| − 1) = Σ.
Since the system is observable, according to [24], it is well

known that the estimation error covariance matrices P (k) and
the gain K(k) will converge to

P , lim
k→∞

P (k), P+ = APA> +BQB>, (5)

K , P+C
>(CP+C

> +R)−1. (6)

Since typically the control system will be running for an
extended period of time, we can assume that the Kalman filter
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is at steady state, or equivalently that Σ = P . Thus the Kalman
filter reduces to the following fixed-gain linear estimator:

x̂(k + 1) = (A−KCA)x̂(k) +Ky(k + 1). (7)

We denote the matrix K = [K1, . . . ,Km], where Ki stands
for the ith column vector of K. Accordingly, (7) can be
rewritten as

x̂(k + 1) = (A−KCA)x̂(k) +

m∑
i=1

Kiyi(k + 1). (8)

The goal of this paper is to design a estimation algorithm
such that: if ai(k) = 0 for all k and i, the estimate coincides
with the Kalman estimate as described by (7) with a certain
probability; if p sensors are compromised, it still gives a
stable estimate against the (p,m)-sparse attack. To achieve
this objective, in this paper we will first propose an approach
to decompose the Kalman estimate into a linear combination
of estimates generated by a set of local estimators. Then, a
secure fusion scheme is presented to replace the linear fusion
scheme.

III. DECOMPOSITION OF KALMAN FILTER USING LOCAL
ESTIMATE

In this section, we propose a method to decompose the
Kalman estimate (7) into a weighted sum of the local state
estimates ζ̂i(k), i = 1, . . . ,m, which leverage on all the
historical measurements and reduce the computational burden
of the central estimator. We further assume the following
condition through the rest of the paper:

Assumption 2. [22] The matrix A−KCA and matrix A do
not share any eigenvalue.

The matrix A − KCA can be decomposed into a Jordan
form, i.e.,

A−KCA = VJV−1. (9)

where J = diag{J1, J2, · · · , Jp}, each Jordan block Jl ∈
Cnl×nl with eigenvalue λl is

Jl =


λl 1 0

λl 1
. . . . . .

. . . 10
λl


,

and
∑p
l=1 ni = n for l = 1, 2, · · · , p.

Define Q = V−1 = [QH1 , · · · , QHp ]H and QHl =[
αl,1 · · · αl,nl

]
, where αl,1 ∈ Cn, · · · , αl,nl

∈ Cn, and
Ql ∈ Cnl×n for l = 1, 2, · · · , p. We can rewrite (8) as

Qx̂(k + 1) = J [Qx̂(k)] +

m∑
i=1

QKiyi(k + 1). (10)

Unlike our preliminary paper [22] which requires the ob-
servability of the system from each sensor, in this technical
note, we deal with the general case that the system is not
necessarily fully observable by the ith sensor, i.e., (A,Ci)

may not be observable. At this point, our goal is to generate
m local state estimates ζ̂i(k), i = 1, . . . ,m, such that:

1) Each local estimator generates a stable estimate on the
subspace that is observable to the sensor;

2) The Kalman estimate x̂(k) can be recovered as a linear
combination of ζ̂i(k), i.e.,

x̂(k) = F1ζ̂1(k) + . . .+ Fmζ̂m(k). (11)

Remark 1. The core of this decomposition is that (11) will
be interpreted as the solution of a least square problem in the
next section. The coefficients of least square fusion are time-
invariant. Under Assumption 1 and Assumption 2, we are able
to obtain a particular decomposition based on the algebraic
analysis to guarantee the convergence and uniqueness of the
least square fusion coefficients.

Assuming that the local estimates are computed as

ζ̂i(k + 1) = J ζ̂i(k) + 1nyi(k + 1), ζi(0) = 0, (12)

where 1n ∈ Rn×1 is an all-one vector and J is defined in
(9), the following result can be proved.

Theorem 1. The state estimate x̂ obtained using (11)-(12)
coincides with the Kalman state estimator (7) under the
condition that Fi is selected as

Fi = VXi, (13a)
Xi = diag{X1,i, X2,i, · · · , Xp,i}. (13b)

and Xl,i is

Xl,i =


xnl,i xnl−1,i · · · x2,i x1,i

xnl,i
. . . x3,i x2,i

xnl,i
. . .

...
xnl,i xnl−1,i0

xnl,i

 , (14)

where l = 1, 2, · · · , p and

xnl,i = αHl,nl
Ki, xnl−1,i = (αHl,nl−1 − αHl,nl

)Ki,

· · · · · · , x2,i = (αHl,2 − αHl,3)Ki, x1,i = (αHl,1 − αHl,2)Ki.

Proof: According to the form of (13b) and (14), it can
be verified that:

Xi1n =



αH1,1Ki

...
αH1,n1

Ki

...
αHp,1Ki

...
αHp,np

Ki


=


Q1

Q2

...
Qp

Ki = QKi. (15)

Since Xi and J are block diagonal matrices with appropriate
dimensions, we obtain that

XiJ = JXi. (16)
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Therefore, multiplying both sides of (12) by VXi, we obtain

VXiζ̂i(k + 1) = VXiJ ζ̂i(k) + VXi1nyi(k + 1)

= VJV−1VXiζ̂i(k) +Kiyi(k + 1)

= (A−KCA)VXiζ̂i(k) +Kiyi(k + 1). (17)

Comparing (8) and (17), we can obtain the decomposition (11)
with Fi = VXi.

To study the relationship between the local estimate
ζ̂i(k) and the state x(k), define the matrices Gi =[
GH1,i G

H
2,i · · · GHp,i

]H ∈ Cn×n for i = 1, 2, · · · ,m, where

Gl,i =


CiA(A− λlI)−nl + · · ·+ CiA(A− λlI)−1

...
CiA(A− λlI)−2 + CiA(A− λlI)−1

CiA(A− λlI)−1


nl×n

(18)

for l = 1, 2, · · · , p. Note that the inverse of A − λiI is well
defined since A does not share eigenvalues with A − KCA
and J . The following corollary can be proved.

Corollary 1. Let εi(k) , Gix(k)− ζ̂i(k), then

εi(k + 1) = J εi(k) + (GiB − 1nCiB)w(k)

− 1nvi(k + 1)− 1nai(k + 1). (19)

In other words, ζ̂i(k) is a stable estimate of Gix(k) since
A−KCA is stable.

Proof: By the definition of εi(k), we have

εi(k + 1) = Gix(k + 1)− ζ̂i(k + 1)

= (GiA− 1nCiA)x(k)− J ζ̂i(k)

+ (GiB − 1nCiB)w(k)− 1nvi(k + 1)− 1nai(k + 1).

Furthermore, it can be verified that Gl,iA−1nl
CiA = JlGl,i.

These two facts imply that

GiA− 1nCiA = JGi. (20)

Therefore, we obtain that

εi(k + 1) = J εi(k) + (GiB − 1nCiB)w(k)

− 1nvi(k + 1)− 1nai(k + 1),

which concludes the proof.
The following lemma is proposed to characterize a further

interesting property of Fi and Gi, for i = 1, 2, · · · ,m.

Lemma 1. Under Assumption 1, the matrices F1, · · · ,Fm
and matrices G1, · · · ,Gm satisfy the following equation:

m∑
i=1

FiGi = I. (21)

Proof: According to (13a), it follows that

FiGi = VXiGi = V

X1,iG1,i

...
Xp,iGp,i

 .

Considering
∑m
i=1Xl,iGl,i, ∀l = 1, 2, · · · , p, we obtain the

following equation

m∑
i=1

Xl,iGl,i =

m∑
i=1



∑nl

h=1 α
H
l,hKiCiA(A− λlI)−h∑nl

h=2 α
H
l,hKiCiA(A− λlI)1−h

...∑nl

h=nl−1 α
H
l,hKiCiA(A− λlI)(nl−2)−h

αHl,nl
KiCiA(A− λlI)−1

 .
(22)

Since Ql(A−KCA) = JlQl, we have that

αHl,nl
KCA = αHl,nl

(A− λlI),

αHl,nl−1KCA = αHl,nl−1(A− λlI)− αHl,nl
,

...

αHl,1KCA = αHl,1(A− λlI)− αHl,2. (23)

By noticing that
∑m
i=1KiCi = KC and substituting (23) into

(22), then we can obtain that
m∑
i=1

Xl,iGl,i =
[
αl,1 · · · αl,nl

]H
= Ql.

Finally, we have

m∑
i=1

FiGi = V


∑m
i=1X1,iG1,i

...∑m
i=1Xp,iGp,i

 = V

Q1

...
Qp

 = VQ = I.

IV. A LEAST SQUARE INTERPRETATION FOR THE
DECOMPOSITION

In this section, we show that the linear fusion scheme (11)
can be interpreted as the solution of a least square problem,
which will be used later to derive a secure fusion scheme.

According to the recursive equation (19), let εi(k) =
φi(k) + ϕi(k) and define φi(k), ϕi(k) as follows:

φi(k + 1) = J φi(k) + (GiB − 1nCiB)w(k)− 1nvi(k + 1),

ϕi(k + 1) = Jϕi(k)− 1nai(k + 1). (24)

where φi(k) can be regarded as the error of the local estimate
caused by the noise and ϕi(k) as the error caused by the bias
injected by the adversary.

Furthermore, denote J̃ ∈ Cmn×mn, φ̃(k) ∈ Cmn, ϕ̃(k) ∈
Cmn, ε̃(k) ∈ Cmn as

J̃ , diag{J , · · · ,J }, φ̃(k) ,
[
φH1 (k) · · · φHm(k)

]H
,

ϕ̃(k) ,
[
ϕH1 (k) · · · ϕHm(k)

]H
, ε̃(k) ,

[
εH1 (k) · · · εHm(k)

]H
.

(25)

Following the property of linear transformation from Gaus-
sian random vectors, we know that φ̃(k) will be Gaussian
distributed and its covariance satisfies the following Lyapunov
equation:

Cov[φ̃(k + 1)] = J̃ Cov[φ̃(k)]J̃H + Ξ. (26)
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where Ξ = Ξ1 + Ξ2 and

Ξ1 = Cov


 G1B − 1nC1B

...
GmB − 1nCmB

w(k)



=

 G1B − 1nC1B
...

GmB − 1nCmB

Q
 G1B − 1nC1B

...
GmB − 1nCmB


H

, (27)

Ξ2 =Cov


1nv1(k + 1)

...
1nvm(k + 1)


=1mn×mn ◦ (R⊗ 1n×n) .

(28)

where ◦ denotes element-wise matrix multiplication, ⊗ is the
Kronecker product, and 1mn×mn is an all one matrix of size
mn×mn.

Define W̃ as the fix point1 of (26), i.e.,

W̃ = J̃ W̃J̃H + Ξ. (29)

Now, we propose the following optimization problem:

minimize
x̌(k),ε̌(k)

1

2
ε̌(k)HW̃−1ε̌(k) (30)

subject to

 ζ̂1(k)
...

ζ̂m(k)

 =

G1

...
Gm

 x̌(k)− ε̌(k).

This problem can be interpreted as the problem of finding
an estimate x̌(k) that minimizes a weighted least square of
the error with the local estimates ζ̂i(k), where the weighting
matrix is related with the covariance of the error of the local
estimates.

We are now ready to establish the connection between the
linear fusion scheme (11) and the least-square problem (30),
which is developed in the following theorem.

Theorem 2. The solution of the least-square problem (30) is

x̌(k) =

m∑
i=1

Fiζ̂i(k) = x̂(k),

ε̌(k) =

I −
G1

...
Gm

 [F1 . . . Fm
] ε̃(k).

Proof: For the sake of legibility, the proof is reported in
the Appendix A.

Remark 2. It should be noticed that the framework can
be easily generalized to decompose other linear fixed-gain
estimators, e.g., H2 and H∞ estimators, since the proof
technique presented in Theorem 2 is purely algebraic.

We know that the linear fusion scheme (11) is not secure in
the sense that if sensor i is compromised, then the adversary
can manipulate ζ̂i(k) by injecting the bias ai(k) into the

1W̃ is well defined since the Jordan form J is strictly stable

measurements yi(k). Therefore, the adversary can potentially
change the Kalman estimate arbitrarily. To crack the security
challenges, in Section V, we modify (30) by adding an `1
penalty to guarantee the stability of the state estimation in the
presence of malicious sensors.

V. A SECURE INFORMATION FUSION SCHEME

In this section, we consider two scenarios of attack model
and propose a convex optimization approach to combine the
local estimate into a more secure state estimate.

Notice that the error εi(k) can be decomposed as the error
φi(k) caused by the noise and the error ϕi(k) caused by the
bias injected by the adversary. As a result, we propose the
following secure fusion scheme based on LASSO [25]:

minimize
x̌s(k),φ̌(k),ϕ̌(k)

1

2
φ̌(k)HW̃−1φ̌(k) + γ‖ϕ̌(k)‖1 (31)

subject to ζ̂i(k) = Gix̌s(k)− φ̌i(k)− ϕ̌i(k), ∀i ∈ S,

where x̌s(k) is the secure state estimation, γ is a constant
chosen by the system operator, and φ̌(k), ϕ̌(k) are defined as:

φ̌(k) ,

 φ̌1(k)
...

φ̌m(k)

 , ϕ̌(k) ,

 ϕ̌1(k)
...

ϕ̌m(k)

 .
We now consider two scenarios: i) all sensors are be-

nign and the system is operating normally; ii) p sensors
are compromised. The following two theorems characterize
the performance of the secure fusion scheme (31) for each
scenario:

Theorem 3. Let x̌s(k), φ̌(k), ϕ̌(k) be the minimizer for the
optimization problem (31). Let x̌(k), ε̌(k) be the minimizer for
the least-square problem (30). Then the following statements
hold:

1) The following inequality holds:

‖W̃−1φ̌(k)‖∞ ≤ γ. (32)

2) Suppose that all the sensors are benign, i.e., a(k) =
0 for all k. We conclude that x̌s(k) = x̌(k) = x̂(k),
φ̌(k) = ε̌(k), ϕ̌(k) = 0, if the following inequality holds:∥∥∥∥∥∥∥W̃−1

I −
G1

...
Gm

 [F1 . . . Fm
] ε̃(k)

∥∥∥∥∥∥∥
∞

≤ γ.

(33)

Proof: The proof easily follows from [22], hence we omit
it here to save the space.

Remark 3. If the system is operating long enough and all
sensors are benign, we have Cov(ε̃(k)) ≈ W̃ and we can
compute the probability that the secure state estimate equals
to the optimal Kalman estimate.

For the second scenario, we consider p (p < m) sensors are
compromised. The stability of the proposed secure estimator
is characterized by the following theorem.
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Theorem 4. Suppose that p (p < m) sensors are compro-
mised, then the secure state estimate x̌s(k) is stable against
the (p,m)-sparse attack if the following inequality holds for
all u 6= 0: ∑

i∈I
‖Giu‖1 <

∑
i∈Ic
‖Giu‖1, ∀I ∈ C.

Proof: The proof directly follows from Theorem 2 in [26].

VI. NUMERICAL EXAMPLE

In this section, we demonstrate our proposed secure estima-
tion via a numerical example. We assume the following matrix
parameters for the system (1) and (4):

A = diag{1, 1,−2}, B = I3, Q = I3,

C =


C1

C2

C3

C4

C5

 =


1 0 0
1 1 −1
1 2 1
1 −1 −0.5
−0.5 1 1

 , R = I5.

One can verify that the system is not fully observable by the
first sensor.

The optimal steady state Kalman gain matrix K and esti-
mation covariance matrix P are

K =

 0.2443 0.0431 0.1942 0.2693 −0.0885
−0.0838 0.2494 0.1469 −0.1991 0.0846
0.1175 −0.4272 0.2265 0.0629 0.1955

 ,
P =

 0.2443 −0.0838 0.1175
−0.0838 0.1879 −0.1452
0.1175 −0.1452 0.3995

 . (34)

The corresponding matrix A − KCA has eigenvalues at
0.1061, 0.1925 and −0.2848. As a result, we can derive the
matrices Gi as follows:

G1 =

0.7783 0 0
1.1187 0 0
1.2384 0 0

 ,G2 =

0.7783 0.7783 −1.1660
1.1187 1.1187 −0.9496
1.2384 1.2384 −0.9122

 ,
G3 =

0.7783 1.5567 1.1660
1.1187 2.2373 0.9496
1.2384 2.4768 0.9122

 ,
G4 =

0.7783 −0.7783 −0.5830
1.1187 −1.1187 −0.4748
1.2384 −1.2384 −0.4561

 ,
G5 =

−0.3892 0.7783 1.1660
−0.5593 1.1187 0.9496
−0.6192 1.2384 0.9122

 .
We consider two scenarios: i) all sensors are benign; ii) the

first sensor is under attack and a1(k) = 100 for all k. Define
the empirical Mean Squared Error (MSE) as

MSE =

∑T
k=1 ‖x̌s(k)− x(k)‖2

T
,

where T denotes iterative steps of the time. We then compute
MSE of the secure estimator for each scenario with different
choices of γ.
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Fig. 2. Normalized MSE of the secure estimator v.s. different choices of γ.

When all sensors are benign, the optimal Kalman estimator
has an MSE equals to tr(P ). In our simulation, tr(P ) =
0.8317. Hence, we define the normalized MSE as the MSE
divided by 0.8317. Fig. 2 illustrates the normalized MSE of
the proposed secure estimator versus γ. It can be seen that
when γ ≥ 2, the secure estimator achieves roughly the same
estimation performance as the optimal Kalman estimator under
normal operation. On the other hand, if sensor 1 is malicious,
then the MSE achieves the minimum at around γ = 0.75.

Remark 4. Theorem 3 indicates that increasing γ will
increase the likelihood that the secure estimation equals the
Kalman estimation during normal operation, then we can see
that the estimation performance under normal operation is
better with a larger γ in Fig. 2. On the other hand, the
larger γ may cause performance degradation under attack.
However, we can see that there is an optimal γ for the
estimation performance under attack. Hence, in practice we
can adjust the parameter γ to obtain a desirable tradeoff
between different scenarios.

VII. CONCLUSION

In this technical note, the problem of secure state estimation
has been investigated for a linear time-invariant Gaussian
system in the presence of sparse integrity attacks. The system
may be unobservable by some sensors and p of m sensors can
potentially be compromised by an adversary. We establish a
framework to generate the local state estimate and achieve the
decomposition of Kalman filter, which coincides with a certain
probability to the Kalman estimate when the system is under
normal operation. Using convex optimization, we combine the
local estimate into a more secure state estimate and propose a
sufficient condition under which the secure state estimator is
stable against the (p,m)-sparse attack. A numerical example
with simulation results has shown a good performance of the
proposed secure estimator. In the future, we will consider how
to perform the Kalman filter decomposition and how to design
secure state estimate for the time-varying systems.
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APPENDIX A
PROOF OF THEOREM 2

In order to prove Theorem 2, we need two preliminary
lemmas.

Lemma 2. Let K be the steady state Kalman gain defined in
(6). For any matrix L, such that A − LCA is strictly stable,
then we have that

P = (A−KCA)P (A− LCA)H

+ (B −KCB)Q(B − LCB)H +KRLH , (35)

where P is defined in (5).

Proof: The proof is omitted here, since it easily follows
from [22].

Lemma 3. Denote the covariance matrix R = [rij ]m×m, for
i, j = 1, 2, · · · ,m, the following Lyapunov equation holds:

PGHj = (A−KCA)PGHj J + (B −KCB)Q

× (GjB − 1nCjB)H +

m∑
i=1

rijKi1
H
n , (36)

where P is defined in (5).

Proof: Define the matrix Lj ∈ Cn×m as an all zero matrix
except that the jth column is Lj ∈ Cn, i.e.,

Lj =
[
0 · · · 0 Lj 0 · · · 0

]
,

where Lj satisfies the assumption in Lemma 2, i.e., A−LjCA
is strictly stable.

It can be verified that

LjC = LjCj , KRLHj =

m∑
i=1

rijKiL
H
j .

According to Lemma 2, we can rewrite (35) into the following
form:

P = (A−KCA)P (A− LjCjA)H

+ (B −KCB)Q(B − LjCjB)H +

m∑
i=1

rijKiL
H
j ,

(37)

which satisfies for any Lj ∈ Cn.
Here we choose Lo,l,j ∈ Cn×1 such that LHo,l,jG

H
o,l,j = 1,

where o = 1, 2, · · · , nl, l = 1, 2, · · · , p and Go,l,j represents
the oth row of matrix Gl,j described in (18). Since Ci is a non-
zero row vector and A−λlI is invertible, Go,l,j is a non-zero
row vector for all o = 1, 2, · · · , nl, l = 1, 2, · · · , p. Thus we
can always find a column vector Lo,l,j to satisfy the condition
Go,l,jLo,l,j = 1.

Right multiplying GHo,l,j at the RHS and LHS of (37), we
can obtain that

PGHo,l,j = (A−KCA)P (AHGHo,l,j −ATCHj )+

(B −KCB)Q(BHGHo,l,j −BHCHj )+

m∑
i=1

rijKi.

(38)

Since GHl,j = [GH1,l,j · · · GHo,l,j · · · GHnl,l,j
], we can rewrite

(38) in the following form:

PGHl,j = (A−KCA)P (AHGHl,j −ATCHj 1Hnl
)+

(B −KCB)Q(Gl,jB − 1nl
CjB)H +

m∑
i=1

rijKi1
H
nl
.

Due to GHj = [GH1,j · · · GHl,j · · · GHp,j ] and (20), it follows
that

PGHj = (A−KCA)P (AHGHj −AHCHj 1Hn )

+ (B −KCB)Q(GjB − 1nCjB)H +

m∑
i=1

rijKi1
H
n

= (A−KCA)PGHj J + (B −KCB)Q

× (GjB − 1nCjB)H +

m∑
i=1

rijKi1
H
n .

Proof of Theorem 2: We rewrite the matrix W̃ in a block
diagonal form:

W̃ =

 W̃11 · · · W̃1m

...
. . .

...
W̃m1 · · · W̃mm

 ,
where each W̃ij ∈ Cn×n. As a result, by (29), we know that
W̃ij satisfies:

W̃ij = J W̃ijJ + (GiB − 1nCiB)Q(GjB − 1nCjB)H

+ rij1n1
H
n . (39)

According to (13a), (15) and (16), we know that

FiJ = VXiJ = VJXi = VJV−1VXi
= VJV−1Ki = (A−KCA)Fi,

Fi1n = VXi1n = VQKi = Ki.

Left multiplying Fi at the RHS and LHS of (39), we deduce
that

FiW̃ij = (A−KCA)FiW̃ijJ + (FiGiB −KiCiB)

×Q(GjB − 1nCjB)H + rijKi1
H
n .

Therefore, let S̃j =
∑m
i=1 FiW̃i,j , by Lemma 1 and∑m

i=1(FiGiB −KiCiB) = B −KCB, we conclude that S̃j
satisfies the following recursive equation

S̃j = (A−KCA)S̃jJ + (B −KCB)Q(GjB − 1nCjB)H

+

m∑
i=1

rijKi1
H
n . (40)

Hence, by Lemma 3, S̃j = PGHj for all j = 1, . . . ,m,
which implies that[

F1 · · · Fm
]
W̃ = P

[
GH1 · · · GHm

]
. (41)
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On the other hand, according to the result of least square
estimation, it is easy to show that the optimal solution of (30)
is given by

x̌(k) = (GHW̃−1G)−1GHW̃−1

 ζ̂1(k)
...

ζ̂m(k)

 ,
where GH =

[
GH1 · · · GHm

]
. By (41), we have that

GHW̃−1G = P−1
[
F1 · · · Fm

]
G = P−1.

Therefore, it can be obtained that

x̌(k) =
[
F1 · · · Fm

]  ζ̂1(k)
...

ζ̂m(k)

 = x̂(k).

According to the definition of ε̃(k), we can get that ζ̂1(k)
...

ζ̂m(k)

 =

G1

...
Gm

x(k)− ε̃(k). (42)

From the optimization problem (30) we know that ζ̂1(k)
...

ζ̂m(k)

 =

G1

...
Gm

 [F1 · · · Fm
]  ζ̂1(k)

...
ζ̂m(k)

− ε̌(k). (43)

From (42) and (43), it follows that

ε̌(k) =


G1

...
Gm

 [F1 . . . Fm
]
− I


 ζ̂1(k)

...
ζ̂m(k)


=

I −
G1

...
Gm

 [F1 . . . Fm
] ε̃(k).

This completes the proof.
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