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Stochastic Sensor Scheduling for Energy Constrained
Estimation in Multi-Hop Wireless Sensor Networks

Yilin Mo∗, Emanuele Garone†, Alessandro Casavola], Bruno
Sinopoli∗

Abstract—Wireless Sensor Networks (WSNs) enable a wealth of new
applications where remote estimation is essential. Individual sensors
simultaneously sense a dynamic process and transmit measured infor-
mation over a shared channel to a central fusion center. The fusion
center computes an estimate of the process state by means of a Kalman
filter. In this paper we assume that the WSN admits a tree topology
with one fusion center at the root. At each time step only a subset of
sensors can be selected to transmit observations to the fusion center
due to a limited energy budget. We propose a stochastic sensor selection
algorithm that randomly selects a subset of sensors according to a certain
probability distribution, which is opportunely designed to minimize the
asymptotic expected covariance matrix of the estimation error. We show
that the optimal stochastic sensor selection problem can be relaxed into a
convex optimization problem and thus efficiently solved. We also provide
a possible implementation of our algorithm which does not introduce any
communication overhead. The paper ends with some numerical examples
that show the effectiveness of the proposed approach.

Index Terms—Wireless Sensor Networks, Optimization, State Estima-
tion.

I. INTRODUCTION

Sensor networks span a wide range of applications, including
environmental monitoring and control, health care, home and office
automation and traffic control [1]. In these applications, estimation
algorithms like Kalman filters can be used to undertake state estima-
tion tasks based on lumped-parameter models of distributed physical
phenomena. However, WSN operating constraints, such as power
limitations, often make it difficult to collect data from every sensor
at the desired sampling rates. These considerations have led to the
development of sensor scheduling strategies able to select, at each
time step, the subset of reporting sensors that minimizes a certain
cost function, usually related to the expected estimation error.

Sensor network energy consumption minimization and, conse-
quently, lifetime maximization problems have been active areas of
research over the past few years, as researchers realized that energy
limitations constitute one of the major obstacles to the extensive adop-
tion of such a technology. Sensor networks energy minimization is
typically accomplished via efficient MAC protocols [2] or via efficient
scheduling of sensor states [3], [4]. In [5], Xue and Ganz show that
the lifetime of sensor networks is influenced by transmission schemes,
network density and transceiver parameters with different constraints
on network mobility, position awareness and maximum transmission
ranges. Chamam and Pierre [6] propose a sensor scheduling scheme
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capable of optimally putting sensors in active or inactive modes. Shi
et. al [7] propose a sensor tree scheduling algorithm which leads to
longer network lifetime.

Conversely, performance optimization of sensor networks under
a given energy constraint, which can be seen as the dual problem
of network energy minimization, has also been studied by several
researchers. Such a constrained optimization problem has been stud-
ied for continuous-time linear systems in [8] and [9]. In [10], the
author compute the optimal sensor scheduling for the estimation of a
Hidden Markov Model. For discrete-time linear systems, methods
like dynamic programming [11] or greedy algorithms [12] have
been proposed to find the optimal sensor scheduling over long time
horizons.

Another important contribution on this topic is the work of Joshi
and Boyd [13], where a general single-step sensor selection problem
is formulated and solved by means of convex relaxation techniques.
Such a paper provides a very general framework that can handle vari-
ous performance, energy criteria and topology constraints. Following
this work, Mo et al. [14], [15] show that multi-step sensor selection
problems can also be relaxed into convex optimization problems and
thus efficiently solved.

A very different approach with respect to the above deterministic
solutions was proposed by Gupta et. al. [16]. There, the authors
propose a stochastic sensor selection algorithm in networks endowed
with star topology. The algorithm is based on the idea that at each
time step the sensors randomly choose whether to send measurements
or not according to a certain probability distribution. Therefore, the
probability distributions, which are chosen to minimize the expected
steady-state error covariance matrix, become the optimization pa-
rameters. The authors argue that such a stochastic approach has
several advantages over the conventional deterministic approaches.
For example, it is easier to take into account random communication
channel failures, which is a quite common issue in wireless sensor
networks. The most relevant limitation of the results presented in
that paper, beside the restriction to star topologies, hinges upon the
assumption that only one sensor at a time can transmit its data in
each sampling period, which is a strong assumption and requires a
precise coordination between sensors.

In the present work, we go further on by proposing a stochastic sen-
sor selection algorithm that not only overcomes the above limitations
but also solves the routing problem under the assumption that the
wireless sensor network has a tree topology. The proposed approach
may be summarized as follows: the sensors are randomly selected
according to a certain probability distribution that is designed so as to
minimize the expected asymptotic estimation error covariance matrix
while maintaining the connectivity of the network. In order to make
the determination of the optimal probability distribution tractable, the
problem is relaxed into a convex formulation. The advantages of the
stochastic schedule over the deterministic one can be summarized as
follows:

1) The search space of the stochastic formulation is continuous
and convex, while the search space of deterministic formulation
is discrete. Hence, the search of the optimal deterministic
schedule is formulated as an integer programming problem,
which makes the optimization problem potentially harder than
its stochastic counterpart.

2) The expected performance of the stochastic formulation can
be better than the deterministic one. Moreover, due to the
ergodicity of the random Riccati equation, we can prove that
under mild assumptions almost every sample path of the
stochastic schedule is better than the deterministic one if the
system runs long enough.

3) The stochastic schedule can be implemented with the same
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computation and communication cost as the deterministic one.
The rest of the paper is organized as follows. In Section II we

define the system and the communication model and introduce both
the stochastic and deterministic sensor selection problems. We further
present an ergodicity result on the performance of the stochastic
sensor scheduling method which shows that the stochastic formu-
lation showcases performance improvements with high probability.
In Section III, we relax the stochastic sensor selection algorithm to
make the problem solvable and propose an efficient implementation
of the algorithm. Numerical examples are provided in Section IV.
Section V finally concludes the paper.

II. STOCHASTIC AND DETERMINISTIC SENSOR SELECTION

A. System Description

Consider the following discrete-time LTI system

xk+1 = Axk + wk, (1)

where xk ∈ Rn represents the state and wk ∈ Rn the disturbance. It
is assumed that wk and x0 are independent Gaussian random vectors,
x0 ∼ N (0, Σ) and wk ∼ N (0, Q), where Σ, Q > 0 are positive
definite matrices. A wireless sensor network composed of m sensing
devices s1, . . . , sm and one fusion center s0 is used to monitor the
state of system (1). The measurement equation is

yk = Cxk + vk, (2)

where yk = [yk,1, yk,2, . . . , yk,m]′ ∈ Rm is the measurement
vector1. Each element yk,i represents the measurement of sensor i
at time k, C = [C′1, . . . , C

′
m]
′ is the observation matrix and the

matrix pair (C, A) is assumed observable2, vk ∼ N (0, R) is the
measurement noise, assumed to be independent of x0 and wk. We
also assume that the covariance matrix R = diag(r1, . . . , rm) is
diagonal, which means that the measurement noise at each sensor is
independent of all others and nonsingular, that is ri > 0, i = 1, ...,m.

In order to model the communication amongst the nodes we
introduce an oriented communication graph G = {V ,E} where the
vertex set V = {s0, s1, . . . , sm} contains all sensor nodes, including
the fusion center. The set of edges E ⊆ V × V represents the
available connections, i.e. (i, j) ∈ E implies that the node si may
send information to the node sj . Moreover we assume that each node
of the sensor network acts as a gateway for a specific number of other
nodes, which means that every time it communicates with another
node it sends, in a single packet, its own measurements collected
together with all data received from the other nodes.

We always assume that, for every sensor in the network, there
exists one and only one communication path to the fusion center,
i.e. the sensor network has a directed tree topology. Moreover, we
assume that each link has an associated weight c(ei,j) which indicates
the energy consumed when si directly transmits a packet to sj . For
the sake of legibility, we sometimes abbreviate c(ei,j) as ci, i =
1, . . . ,m because, in the assumed topology, each sensor node has
only one outgoing edge.

Remark 1. The tree topology assumption may be a restrictive
hypothesis for the general cases where one sensor can communicate
with several nearby nodes. However, it is worth to remark that typical
communication network graphs can be approximated by a collection
of “representative” spanning trees (e.g. the first m spanning trees of
the spanning tree enumeration [17]). Space constraints are forcing
the authors to defer this discussion to future works.

1The ′ on a matrix always means transpose.
2The assumption of observability is without loss of generality since we

could perform Kalman decomposition and only consider the observable space
even if the system is not observable.

B. Stochastic v.s. Deterministic Sensor Selection

In order to reduce the energy consumption it is desirable to use a
subset of sensors at each sampling time because of the redundancy
in sensor measurements. However, in a tree topology, we cannot
select arbitrary subsets of nodes as we are forced to select nodes
to guarantee that there exists a communication path to the fusion
center for each selected node. As a result, any possible transmission
topology of G is a subtree T = {VT , ET }, with s0 ∈ VT , VT ⊆ V
and ET ⊆ E. Hereafter, VT denotes the selected subset of sensors
and ET the communication links used by the sensors to transmit
observations to the fusion center. We also denote by T the set of
all possible transmission topologies T (i.e. the set of all possible
subtrees of G containing s0). It is straightforward to show that, for
a transmission tree T , the total transmission energy consumption is
given by3

E(T ) =
∑
e∈ET

c(e).

Suppose that at each time k we randomly select a tree T from
T and each sensor in T transmits its observation back to the fusion
node according to the topology T . Let πk,T be the probability that
the transmission tree T is selected at time k. Then, we define

pk,i ,
∑

T∈T ,si∈VT

πk,T (3)

as the marginal probability that sensor i is selected at time k. Further,
let us define the aggregate vector pk = [pk,1, . . . , pk,m]′ and πk =
[πk,T1 , . . . , πk,T|T | ]

′ containing all pk,is and πk,T s respectively. We
introduce also a binary random variable δk,T such that δk,T = 1 if
the transmission tree T is selected at time k and δk,T = 0 otherwise.
Similarly, the binary random variable γk,i will take value 1 if the
i-th sensor is selected at time k and 0 otherwise. It is well known
that the Kalman filter is still optimal [16] for the above time-varying
system structure. Suppose next that VT = {s0, si1 , . . . , sij}. Then,
we can define

CT , [C′i1 , C
′
i2 , . . . , C

′
ij ]′, RT , diag(ri1 , . . . , rij ). (4)

It can be shown that the estimation error covariance matrix Pk of the
Kalman filter satisfies the following recursive equations:

Pk =
(
P−1
k|k−1 + C′TR

−1
T CT

)−1

, (5)

where Pk|k−1 = APk−1A
′ + Q. Let us define gπk,k as a random

operator such that

gπk,k(X) ,
∑
T∈T

δk,T gT (X), (6)

where P (δk,T = 1) = πk,T , and

gT (X) ,

(AXA′ +Q)−1 +
∑

si∈VT , si 6=s0

CiC
′
i

ri

−1

. (7)

We have
Pk = gπk,k(Pk−1). (8)

In this paper we are interested in determining a time-invariant
stochastic schedule π, i.e. a schedule where the probability of
choosing a tree is constant over time. Hence, let us define

g∞π (X) , lim
k→∞

E(gπ,k ◦ gπ,k−1 ◦ · · · ◦ gπ,1)(X), (9)

3Here we assume that cost(ei,j) is constant regardless of the number of
observations contained in the packet. This is realistic in most of the cases,
especially when measurements are of simple type, such as low precision scalar
values, and the transmission overhead, e.g. header, handshaking protocol,
dominates the payload.
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when the limit exists and infinity otherwise. Note that g∞π is a
deterministic function which indicates what asymptotic performance
of the stochastic sensor selection scheme is to be expected. It is easy
to see that

lim
k→∞

EPk = g∞π (Σ),

when π is used and g∞π (Σ) <∞.
Because the transmission trees are randomly selected, Pk is a

random matrix. Thus, we minimize the asymptotic expected esti-
mation error covariance matrix while requiring that the expected
energy consumption does not exceed a designated threshold Ed. Such
problem can be formulated as follows:

Problem 1 (Fixed Random Schedule that Optimizes Expected
Asymptotic Performance).

minimize
π

trace(g∞π (Σ))

subject to
∑
T∈T

πT E(T ) ≤ Ed, πT ≥ 0,
∑
T∈T

πT = 1.

Please note that if, instead of a stochastic schedule, we want to
look for a fixed deterministic one, the problem we need to solve is
the same Problem 1 with the further constraints that πT s are forced
to be either 0 or 1, namely :

Problem 2 (Fixed Deterministic Schedule that Optimizes Asymptotic
Performance).

minimize
π

trace(g∞π (Σ))

subject to
∑
T∈T

πT E(T ) ≤ Ed, πT = 0 or 1,
∑
T∈T

πT = 1.

Remark 2. In Problem 1 we require that the expected energy
consumption does not exceed a certain energy budget. In real ap-
plications different constraints may be considered (e.g. requirements
on sensor lifetime). However, it can be shown (see e.g. [13]) that
many of these constraints can be easily integrated into the present
framework.

Remark 3. It is worth noticing that at each sampling time, the energy
cost of the deterministic schedule cannot exceed the designated
threshold Ed. Intuitively, this is the reason why stochastic sensor
selections, being allowed to use more energy at one single sampling
period, can achieve better performance than the above deterministic
formulation. It is also worth noticing that this formulation can be
used to derive a periodic schedule by enlarging the state space. As
a consequence, all the results in this section can be generalized to
periodic schedules. However, due to space constraints, Section III
focuses exclusively on time-invariant schedules. Such an extension
will be discussed in future work.

Remark 4. A main difference between Problem 1 and Problem 2 is
that, while the search space of deterministic scheduling is discrete,
the one for the stochastic problem is continuous and convex. This
brings several advantages. First, the deterministic schedule can be
seen as a particular kind of random schedule, where πT s are binary-
valued. As a result, stochastic sensor selection strategies always yield
better or equal performance, in the expected sense, when compared
to the deterministic one. The second advantage is that the feasible
set πT is convex, which allows us to further manipulate the objective
function to obtain a convex optimization problem.

As mentioned above, the expected performance of the optimal
stochastic schedule is equal to or better than its deterministic coun-
terpart. As a consequence, if we denote π∗ as the optimal stochastic

schedule and π∗d the optimal deterministic schedule, we can assert
that

trace(g∞π∗(Σ)) = lim
k→∞

E trace(Pk(π∗)) ≤ lim
k→∞

trace(Pk(π∗d)),

which implies that

lim
N→∞

N∑
k=1

1

N
E trace(Pk(π∗)) ≤ lim

N→∞

N∑
k=1

1

N
trace(Pk(π∗d)),

In other words, the optimal stochastic schedule performs better than
the optimal deterministic one in the expected sense. To strengthen this
result, the following theorem states that almost surely the stochastic
schedule is better than the deterministic schedule almost surely.

Theorem 1. Suppose that the fixed schedule π∗ is the solution
of Problem 1. If the linear system and π∗ satisfy the following
assumptions:

1) A is invertible, (A,Q1/2) is controllable;
2) there exists a transmission topology T with π∗T > 0 such that

(CT , A) is observable
3) the stochastic process {Pk} satisfies: Pk =

gπ∗,k(Pk−1), P0 = Σ,

then almost surely the following inequality holds

lim
N→∞

1

N

N∑
k=1

trace(Pk) ≤ trace(g∞π∗(Σ)). (10)

Proof: It is easy to check that all assumptions in Theorem 3.4 of
[18] hold true. As a result, there exists an ergodic stationary process
{P k} which satisfies P k = gπ∗,k(P k−1). Moreover,

lim
k→∞

‖Pk − P k‖ = 0. a.s.

We want to prove that E(trace(P 0)) is lower than or equal to
trace(g∞π (Σ)) and hence bounded. Because P k is ergodic, and Pk
converges to P k almost surely, we know that

lim
N→∞

1

N

N∑
k=1

min(trace(Pk),M) = lim
N→∞

1

N

N∑
k=1

min(trace(P k),M)

= E[min(trace(P 0),M)], a.s.

where M > 0 is a constant. By the definition of g∞π , we know that

trace(g∞π (Σ)) ≥ lim
N→∞

E

[
1

N

N∑
k=1

min(trace(Pk),M)

]

= E

[
lim
N→∞

1

N

N∑
k=1

min(trace(Pk),M)

]
= E[min(trace(P 0),M)].

The second equality follows from the Dominated Convergence The-
orem. Now, let M → ∞. By the Monotone Convergence Theorem,
it results that

E[trace(P 0)] = lim
M→∞

E[min(trace(P 0),M)] ≤ trace(g∞π (Σ)),

which proves that E[trace(P 0)] ≤ trace(g∞π (Σ)). Hence, by
ergodicity, we obtain

lim
N→∞

1

N

N∑
k=1

trace(Pk) = lim
N→∞

1

N

N∑
k=1

trace(P k) = E(trace(P 0))

≤ trace(g∞π (Σ)), a.s.

Remark 5. Combining Remark 4 with Theorem 1, we conclude
that the average performance of almost every sample path of the
optimal stochastic schedule has a lower cost than its deterministic
counterpart.
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Before moving forward, it is worth noticing that Problem 1 is still
numerically intractable for the following reasons:

1) it is usually difficult to express EP∞ as an explicit function of
π1,T , . . . , πk,T ;4

2) since |T | is large, the number of optimization variables and
constraints may be not polynomial with respect to the number
of nodes.

In the next section, we devise a way to overcome the above two
problems.

III. RELAXATION AND IMPLEMENTATION

In this section, we first relax Problem 1 to an explicit convex
problem. We then propose an implementation of our stochastic
schedule without introducing any communication overhead.

A. Relaxation

A lower-bound Lk to EPk is first derived by means of the
following theorem, whose proof is reported in a technical report [20].

Theorem 2. Let L0 = P0 and

Lk =

(
L−1
k|k−1 +

m∑
i=1

pk,i
CiC

′
i

ri

)−1

, (11)

where Lk|k−1 = ALk−1A
′ +Q. The following inequalities hold:

EPk ≥ Lk. (12)

To further improve the legibility, let us define the function

L(X,p) ,

[
(AXA′ +Q)−1 +

m∑
i=1

pi
CiC

′
i

ri

]−1

, (13)

where X ∈ Rn×n is positive semidefinite and p = [p1, . . . , pm]′ ∈
Rm. Moreover, let us define,

L(1)(X,p) = L(X,p), L(k)(X,p) = L(L(k−1)(X,p),p), (14)

with
L∞(X,p) = lim

k→∞
L(k)(X,p), (15)

when the limit exists. Hence (11) can be simplified as

Lk = L(Lk−1,pk). (16)

By replacing the objective function in Problem 1 with its lower bound,
we obtain

Problem 3 (Asymptotic Lower Bound for Random Transmission Tree
Selection).

minimize
πT ,p

trace(L∞(Σ,p))

subject to
∑
T∈T

πT E(T ) ≤ Ed,

πT ≥ 0,
∑
T∈T

πT = 1, pi =
∑
si∈VT

πT .

There are two drawbacks in the above formulation: 1) the opti-
mization problem still has the πT terms as optimization variables, the
number of which grows more than polynomially with respect to m
in general; 2) L∞ is still not an explicit function of the optimization
variables.

4The readers can refer to [19] for more information.

Let us first drop the dependence on πT . To this end, define the set
of feasible p for Problem 3:

P ,

{
p ∈ Rm

∣∣∣∣∣∃π, ∑
T∈T

πT E(T ) ≤ Ed,

πT ≥ 0,
∑
T∈T

πT = 1, pi =
∑
si∈VT

πT

 .

The following results can be easily proved:

Proposition 1. The energy cost of a given collection of tree selection
probabilities πk,T ,∀T ∈ T is a linear function of the resulting
marginal probability:∑

T∈T

πT E(T ) =

m∑
i=1

cipi. (17)

Proposition 2. If pi ∈ [0, 1] and if it satisfies

pi ≤ pj , if j is a parent of i (18)

then there exists at least one collection of tree selection probabilities
π, such that

πT ≥ 0,
∑
T∈T

πT = 1, pi =
∑
si∈VT

πT . (19)

Conversely, if there exists πk such that (19) holds, then pk,i ∈ [0, 1]
and satisfies (18) .

By exploiting the above Propositions we can reformulate the feasible
set P as follows

P =

{
p

∣∣∣∣∣pi ∈ [0, 1],

m∑
i=1

cipi ≤ Ed, pi ≤ pj , if j is parent of i

}
,

(20)
and we can rewrite Problem 3 as

Problem 4 (Asymptotic Lower Bound for Random Transmission Tree
Selection).

mininize
p∈Rm

trace(L∞(Σ,p))

subject to p ∈ P.

The main difficulty in solving the above problem is that L∞(X,p)
is in general not convex in p and its exact form is unknown. Here
we propose the use of the following heuristic:

1) Define p0 =
(
Ed/
(∑m

i=1 ci
))

1m, where 1m ∈ Rm is a vector
with ’1’ in all entries and choose the matrix L0 = L∞(In,p0).

2) Let Lk and pk be the solution of the following optimization
problem
Problem 5 (Random Sensor Selection with Descent Con-
straint).

minimize
pk∈Rm

trace(Lk)(= trace(L(Lk−1,pk)))

subject to Lk ≤ Lk−1, pk ∈ P.

3) Choose p∗ as an accumulation point of pk
5. Then

L∞(X,p∗) = limk→∞ Lk for any X ≥ 0.
Before proving the feasibility of the above algorithm, we want to

point out that our algorithm is greedy. In fact, we try to minimize
the lower bound for the next step in the hope of reducing the final
asymptotic lower bound. As a result, it is suboptimal by nature. The

5An accumulation point of a sequence is the limit of a converging
subsequence
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following theorem [20] gives a characterization of the main features
of the proposed algorithm.

Theorem 3. The following statements are true for the proposed
algorithm:

1) L0 exists.
2) L(X,p) is convex with respect to p and it is concave and

monotonically increasing with respect to X .
3) Problem 5 is always feasible.
4) p∗ exists and p∗ ∈ P .
5) L∞ = limk→∞ Lk exists.
6) L∞ = L∞(X,p∗) for all positive semidefinite X .

Proof:
1) The proof is reported in [20].
2) The proof is reported in [20].
3) Suppose that the Problem 5 is feasible up to time k. To prove

the problem is also feasible at time k + 1, we only need to
find one p ∈ P and L(Lk,p) ≤ Lk. If we choose p =
pk then, since pk is the solution at time k, it follows that
pk ∈ P . It remains to show that L(Lk,pk) ≤ Lk, which
can be proved by noticing that Lk = L(Lk−1,pk) ≤ Lk−1

and L(X,p) is monotonically increasing with respect to X .
Similarly, Problem 5 is also feasible at time 1 and then, by
induction, Problem 5 is always feasible.

4) It is easy to see that pk is bounded because pk,i ∈ [0, 1]. By
means of the Bolzano-Weierstrass Theorem, this implies that
there always exists an accumulation point p∗. Moreover, since
pk ∈ P and P is closed, p∗ ∈ P .

5) The limit must exist because {Lk} is decreasing and Lk ≥ 0
for all k,

6) The proof is reported in [20].

Remark 6. Due to the convexity of L and P , Problem 5 is a convex
optimization problem with O(m) optimization variables and O(m)
constraints. Thus, it can be solved efficiently. For example, if interior-
points methods are used, then the complexity is O(m3) [21].

Remark 7. It is worth noticing that in general there may exist more
than one set of πT ,∀T ∈ T with the same marginal probabilities.
One possible way to determine a feasible πT is as follows:

1) Sort the marginal probability pi, suppose that pi1 ≥ pi2 ≥
. . . ≥ pim .

2) Define T0 = {s0}, Tj = Tj−1

⋃
{sij}.

3) Choose πT0 = 1 − pi1 , πT1 = pi1 − pi2 , πT2 = pi2 −
pi3 , . . . , πTm = pim .

One can easily verify that Ti ∈ T and πT are compatible with the
marginal probability.

B. Implementation

In this subsection we discuss a possible implementation of our
sensor selection scheme. We assume the optimal marginal probability
is p, which is computed off-line in a centralized fashion. Each i-th
sensor stores the optimal values pi and pj of all its children.

At each time k, we have to select sensors according to the marginal
probabilities p. However, we don’t want the fusion center to query
the nodes because this would increase the communication overhead,
defying the purpose of sensors selection. To overcome this problem,
we propose the following algorithm:

1) Every sensor is equipped with the same random number gen-
erator and the same seed.

2) At time k, each sensor draws a random number αk from the
random number generator.

3) If sensor i has no children, then it compares αk with pi. If αk ≤
pi, then it transmits the measurement to its parent. Otherwise,
it does not transmit anything.

4) If sensor i has children, then it compares αk with pj , where j
is the index of its child node. If αk ≤ pj , then sensor i knows
that child j will forward an observation packet to him. After the
node i receives all the observation packets from its children, it
merges all packets and its own observations into a single packet
and forwards it to its parent. If αk > pj for all j-th child of i,
then the node i compares αk with pi. If αk ≤ pi, then sensor
i transmits its measurements to its parent. Otherwise, it does
not transmit anything.

Since all sensors are equipped with the same random number genera-
tor and the same seed, every sensor gets the same αk at time k. Hence,
the above algorithm guarantees that all sensors agree on the same
transmission topology T which satisfies the marginal distribution
p. It is worth remarking that in such a scheme the only required
data exchange amongst nodes is the transmission of the observation
packets and no communication overhead for coordination purposes
is needed.
Remark 8. It is worth mentioning that, because all sensors agree on
the same αk, it is very easy to implement a Time Division Multiple
Access (TDMA) protocol to avoid wireless interference.

IV. SIMULATION RESULT

In order to show the effectiveness of the proposed method we apply
our stochastic sensor selection algorithm to a numerical example in
which a sensor network is deployed to monitor a diffusion process
in a l × l planar closed region, whose model is given by

ut = αO2u. (21)

where O2 is the Laplace operator. The term u(t, x1, x2) denotes the
temperature at location (x1, x2) at time t and α indicates the speed
of the diffusion process.

We use the finite difference method to discretize this model by
gridding the region into 1 meter × 1 meter tiles and time steps of
1s. If we group all temperature values at time k in the vector Uk =
[u(k, 0, 0), . . . , u(k, 0, N−1), u(k, 1, 0), . . . , u(k,N−1, N−1)]T ,
we can write the evolution of the discretized system as Uk+1 =
AUk, where the A matrix can be computed from discretization. If
we introduce process noise, Uk will evolve according to Uk+1 =
AUk + wk, where wk ∈ N (0, Q) is the process noise.

We suppose that the fusion center is located in the bottom left
corner at position (0, 0). We assume that m sensors are randomly
distributed in the region and that each sensor measures a linear
combination of temperature on the grid vertices around it6. In
particular, if we suppose the location of sensor l of coordinates
(a1, a2) is in the cell [i, j], i.e. a1 ∈ [i, i + 1) and a2 ∈ [j, j + 1),
the measurement of this sensor is given by

yk,l = [ (1−∆a1)(1−∆a2)u(k, i, j) + ∆a1(1−∆a2)u(k, i+ 1, j)+

(1−∆a1)∆a2u(k, i, j + 1) + ∆a1∆a2u(k, i+ 1, j + 1) ] /h2 + vk,l.

where ∆a1 = a1 − i, ∆a2 = a2 − j and vk,l is the measurement
noise of sensor l at time k. Indicating with Yk the vector of all
measurements at time k, it follows that: Yk = CUk + vk, where vk
denotes the measurement noise at time k assumed to have normal
distribution N (0, R) and C is the observation matrix. Finally, we
assume that the sensor network admits a minimum spanning tree
topology with communication cost from sensor i to j given by

cost(ei,j) = c+ d2i,j ,

6We do not require the sensors to be placed at grid points
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where dij is the Euclidean distance from sensor i to sensor j and
c is a constant related to the energy consumption for sensing7. For
the simulations, we impose the following parameters: l = 3 meters,
m = 16, α = 0.1, Q = I = R = I ∈ R16×16, Σ = 4I ∈ R16×16,
Ed = 6,c = 1.

We compare the performance of the proposed fixed stochastic
schedule with the optimal fixed deterministic one found by exhaustive
search. Figure 1 shows the histogram of the ratio between trace(P∞)
of the deterministic schedule and trace(EP∞) of the stochastic one
computed used the proposed algorithm, computed over 100 random
sensor placements. For each placement we computed the empirical
expectation. The blue dashed line is the average ratio. It can be seen
that the deterministic schedule is always worse than the stochastic
one, which yields over 35% improvement over the deterministic
optimum in the average. Figure 2 shows the trace of Pk for the
optimal deterministic fixed schedule, together with the trace of Pk
from a sample path and EPk of the stochastic fixed schedule for
one placement. The figure clearly shows how the average savings are
due to the fact that the stochastic schedule is not constrained to stay
within the energy budget at each step.
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Fig. 1. Histogram of the ratio between trace(P∞) of
deterministic schedule and trace(EP∞) of stochastic schedule
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Fig. 2. Evolution of trace(Pk)

7c models the fact that as the distance goes to zero the communication cost
does not

V. CONCLUSIONS

In this paper, we propose a stochastic sensor selection algorithm
for a wireless sensor network with a tree topology. We solve the
optimal stochastic sensor selection problem after relaxation by means
of convex optimization. We show that a stochastic formulation is
preferable over a deterministic one in terms of both performance
and computational complexity. We also provide an implementation
of our random sensor selection algorithm that doesn’t introduce any
communication overhead, making the results proposed in this paper
appealing for practical implementations. Simulations results validate
the effectiveness of the proposed approach. Future work will include
extensions to arbitrary graphs.
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