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Stochastic Event-triggered Sensor Schedule for

Remote State Estimation
Duo Han∗, Yilin Mo†, Junfeng Wu∗, Sean Weerakkody‡, Bruno Sinopoli‡, Ling Shi∗

Abstract

We propose an open-loop and a closed-loop stochastic event-triggered sensor schedule for remote state estimation.

Both schedules overcome the essential difficulties of existing schedules in recent literature works where, through

introducing a deterministic event-triggering mechanism, the Gaussian property of the innovation process is destroyed

which produces a challenging nonlinear filtering problem that cannot be solved unless approximation techniques

are adopted. The proposed stochastic event-triggered sensor schedules eliminate such approximations. Under these

two schedules, the minimum mean squared error (MMSE) estimator and its estimation error covariance matrix at the

remote estimator are given in a closed-form. The stability in terms of the expected error covariance and the sample path

of the error covariance for both schedules is studied. We also formulate and solve an optimization problem to obtain

the minimum communication rate under some estimation quality constraint using the open-loop sensor schedule. A

numerical comparison between the closed-loop MMSE estimator and a typical approximate MMSE estimator with

deterministic event-triggered sensor schedule, in a problem setting of target tracking, shows the superiority of the

proposed sensor schedule.

I. INTRODUCTION

The concept of controlled communication [1] between a wireless sensor and an estimator is becoming prevailing

for networked control systems. The reasons why we desire the tradeoff between communication and estimation

performance include but not limited to the following three ones:

1) The importance of each measurement is not equal. For example, an oscillating signal generally requires more

sampling and scheduling efforts than another period of flat signal does.

2) Unlike the estimation center which has sufficient resources, the wireless sensors in most circumstances are

powered by small batteries which are difficult to replace. Thus a sensor should allocate its energy smartly.
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3) The channel bandwidth shared by a large amount of sensors may be limited in some cases [2]–[5], where not

all sensors are able to communicate with the remote estimator all the time.

A typical class of problems is to find the optimal or suboptimal offline sensor schedule in terms of minimum

estimation error covariance given system parameters and different resource constraints [6]–[8]. For example, Yang

et al. [9] studied the scheduling problem over a finite time horizon under limited communication resources. They

have proved that the optimal deterministic offline sensor schedule should allocate the limited number of transmission

as uniformly as possible over the time horizon. Ren et al. [10] further considered the effect of the packets dropout in

the energy-constrained scheduling problem. They constructed an optimal periodic schedule and provided a sufficient

condition under which the estimator is stable. Generally speaking, those offline scheduling strategies, which can

be determined before the system runs, utilize the prior information of the system under investigation. In other

words, the sensor sends the data packet at some fixed time steps obeying a pre-defined deterministic sequence of

transmission decisions.

As the first reason above says, the sensor should prioritize different data packets in terms of some importance

metric and make transmission decisions itself on a real-time basis to pursue a better tradeoff. Since the transmission

process has two states, i.e., Send and Don’t Send, a data packet can be classified into two categories, i.e., Important

data which should be sent and Useless data which should be discarded. The criteria for determining whether a data

packet is important or not is typically designed by human and the sensor executes the checking criteria at each

time step to make a transmission decision. Informally, an event-triggered or event-based schedule refers to that an

event must be triggered to send the data packet, where the event here means a sending criteria is satisfied. This

work aims to find such a checking criteria which acquires good tradeoff between communication and performance

and in the meantime facilitates detailed analysis.

Event-triggered state estimation problem has been intensively studied [11]–[15] after the pioneering work of

Åström and Bernhardsson [16]. For example, Marck and Sijs [17] proposed a sampling method in which an event

is triggered relying on the reduction of the estimators uncertainty and estimation error. Weimer et al. [18] considered

a distributed event-triggered estimation problem. They proposed a global event-triggered policy to determine when

sensors transmit measurements to the central estimator using a sensor-to-estimator communication channel and when

sensors received other sensors measurements using an estimator-to-sensor communication channel. An event-based

sensor schedule which depends on the estimation variance, i.e., sending the measurement only when the variance

exceeds a pre-defined threshold, was proposed in [19], [20]. Tripme and D’Andrea [20] showed the resemblance

between the variance-triggered strategy and the time-based optimal strategy in the limit case, say, both of them are

periodic. Before we introduce our innovative idea, we present some closely related works from literature.

Smart sensors which can run a local Kalman filter and preprocess the measurements have been considered in

several event-based estimation problems. Xu and Hespanha [21] studied a controlled communication problem where

the smart sensor decides when to send the local estimate to the remote estimator. The proposed scheduler determines

the transmission probability at each time step based on a function of the estimation error. Loosely speaking, the

larger the error is, the more likely the data packet will be sent. Lipsa et al. [22] studied the framework where
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a smart sensor monitoring a first order linear time-invariant system communicates with a remote estimator. They

modeled the optimal transmission policy problem as an optimization problem that minimizes a cost combining

the expected error covariance and the communication cost. They found that a symmetric threshold-type policy

is optimal. However, one major problem for smart sensors is that they require the strong computation capability

embedded to run a local Kalman filter. Sometimes, the restriction has to be relaxed.

A more general assumption is that the sensor is primitive, which means that its computation capability is limited,

and it can only send the raw measurement to the estimator. Unfortunately, this broader assumption brings more

complicated data fusion problem. Once the smart sensor sends the local estimate to the estimator, the estimator

resets its estimate to the optimal estimate produced by the local standard Kalman filter. While the estimator that

receives raw measurements from a primitive sensor has to construct a new MMSE estimate to fuse the information

from a received measurement or the absence of a measurement. In [23] the authors compared a function of the

local measurement to a threshold to decide the transmission. A suboptimal filter was sought by considering that the

absence of measurement leads to an artificially enlarged measurement noise covariance. In [24], the Kalman gain

of the proposed filter is a suboptimal solution involving a variable solved as a convex optimization problem. Wu

et al. [25] proposed a deterministic event-triggered scheduler (DET-KF). They derived the exact MMSE estimator

but a number of numerical integrations are involved making it practically useless. They assumed the Gaussian

distribution of the a priori state estimate at each time step which is indeed not, to derive an approximate MMSE

estimator. As far as we know, the existing works such as [23]–[26] on event-based estimation in a primitive sensor

setting cannot bypass one core problem, that is, the introduction of the event-triggering mechanism renders the

derivation of the exact MMSE estimator nonlinear and intractable. This motivates us to find an event-triggered

schedule for a primitive sensor such that the derivation of the optimal estimator is feasible and the tradeoff between

communication and performance is desirable.

In this work, we consider the remote estimation problem in Fig. 1. We focus on the design of decision making

policy and assume an ideal channel, i.e., with no packet delay and dropout, but with finite bandwidth. Two cases

for the estimation problem are studied. The first one is the open-loop case where only the raw measurement can

be accessed by the sensor to make a decision. The other one is the closed-loop case where the sensor receives the

estimate data broadcasted by the estimation center besides its own measurements.1 The sensor thus can send the

measurement innovation of which the redundant information has been removed. As a result, the reduction of data

transmission rate at each node may relieve the traffic congestion significantly. For example, distributed Kalman-like

filter receiving only one or several bits of quantized innovation to save communication bandwidth is considered

in [28]–[30]. The main contributions of this work are summarized as follows.

1) We propose a class of stochastic decision rules and suggest two practical forms of the event-triggered schedule

1Due to the power asymmetry, the estimator or the base station is able to render some feedback information to the local sensor with high

reliability. A practical example is remote state estimation based on IEEE 802.15.4/ZigBee protocol [27], in which the sensor is the network

device and the estimator is the coordinator.
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Fig. 1. Event-triggered sensor scheduling diagram for remote state estimation

in open-loop and closed-loop systems.

2) Under the proposed event-triggered schedule, the derivation of the exact MMSE estimator for each case is no

longer an intractable nonlinear estimation problem. We derive the exact MMSE estimator for each case, which

is in a simple recursive form and easy to analyze.

3) For both cases, we derive the closed-form expression of the average communication rate for the open-loop case

and provide upper and lower bounds of the average communication rate for the closed-loop case. Moreover,

we characterize the statistical properties of the estimator error covariance matrix. Specifically, we care about

whether the error covariance sample path and the mean of the error covariance are bounded. In particular, we

show that for the closed-loop case, the estimator is always stable regardless of the communication rate.

4) We formulate an optimization problem to illustrate how a parameter in the event mechanism satisfying a desired

tradeoff between the communication rate and the estimation quality can be obtained.

The study of error covariance of sample path and the formulation of the optimization problem are not included in

the preliminary study presented in [31]. The remainder of the paper is organized as follows. Section II formulates

the remote estimation problem and proposes the stochastic event-triggered schedules. Section III introduces the

corresponding MMSE estimator design for each case. Section IV presents the analysis results on the communication

rate and the estimation performance. Section V shows how to design the event parameter in the event-triggered

schedule to minimize the communication rate under some performance constraint. Section VI presents some

simulation results. Conclusion and Appendix are given in the end.

Notation: Sn+ and Sn++ are the sets of n×n positive semi-definite and positive definite matrices. When X ∈ Sn+,

we simply write X ≥ 0 (or X > 0 if X ∈ Sn++). ρ(·) is the spectral radius of a square matrix. N (µ,Σ) denotes

Gaussian distribution with mean µ and covariance matrix Σ. Pr(·) denotes the probability of a random event. E[·]

denotes the expectation of a random variable. E[·|·] denotes the conditional expectation. Pr(A|I) is defined as the

conditional expectation of the indicator function IA of event A on the information set I. f ◦ g(x) denotes the

function composition f(g(x)).

II. PROBLEM SETUP

Consider the following linear system:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)
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where xk ∈ Rn is the state vector, yk ∈ Rm is the sensor measurement, wk ∈ Rn and vk ∈ Rm are mutually

uncorrelated white Gaussian noises with covariances Q > 0 and R > 0, respectively. The initial state x0 is zero-

mean Gaussian with covariance matrix Σ0 > 0, and is uncorrelated with wk and vk for all k ≥ 0. (A,C) is

detectable.

After collecting the observation yk, the sensor decides to send it to the remote estimator or not. Let γk be the

decision variable: γk = 1 indicates that yk is sent and γk = 0 otherwise. We assume the estimator has a precise

knowledge of γk. As a result, the information set of the estimator at time k is given as:

Ik , {γ0, . . . , γk, γ0y0, . . . , γkyk},

with I−1 , ∅. Let us further define

x̂−k , E[xk|Ik−1], ŷ−k , E[yk|Ik−1],

e−k , xk − x̂−k , P
−
k , E[e−k e

−T
k |Ik−1],

x̂k , E[xk|Ik], ek , xk − x̂k, Pk , E[eke
−T
k |Ik].

The estimates x̂−k and x̂k are called the a priori and a posteriori MMSE estimate, respectively. Further define the

measurement innovation as

zk , yk − ŷ−k .

Recall from the standard Kalman filter [32], i.e., γk = 1 for all k, x̂k and Pk are computed recursively as

x̂−k = Ax̂k−1, (3)

P−k = APk−1A
T +Q, (4)

Kk = P−k C
T [CP−k C

T +R]−1, (5)

x̂k = x̂−k +Kk(yk − Cx̂−k ), (6)

Pk = (I −KkC)P−k , (7)

where the recursion starts from x̂0 = 0 and P0 = Σ0.

In order to show the novelty and significance of our stochastic event-triggering mechnism, let us have a quick

revision on the deterministic event-triggered schedule in [25]. The authors proposed the following event-triggering

scheme:

γk =

 0, if ‖εk‖∞ ≤ δ,

1, otherwise,

where δ is the pre-defined threshold and εk is the normalized innovation vector. They derived the exact MMSE

estimator involving complicated numerical integration, which will not be listed here. To make the MMSE estimation

problem tractable, they assume the conditional distribution of xk given Ik−1 is Gaussian, i.e.,

fxk(x|Ik−1) ∼ N (x̂−k , P
−
k ).
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Thus they can derive an approximate MMSE estimator as follows:

Time update:

x̂−k = Ax̂k−1,

P−k = APk−1A
T +Q.

Measurement update:

x̂k = x̂−k + γk(P−k C
T
[
CP−k C

T +R
]−1

)zk,

Pk = P−k − [γk + (1− γk)β(δ)]

P−k C
T
(
CP−k C

T +R
)−1

CP−k ,

where

β(δ) =
2√
2π
δe−

δ2

2 [1− 2Q(δ)]
−1
,

Q(δ) =

∫ +∞

δ

1√
2π
e−

x2

2 dx.

Remark 1. In the classical periodic transmission problem setup, xk conditioned on Ik (or Ik−1) is Gaussian.

Therefore, x̂k and Pk (or x̂−k , P
−
k ) are sufficient to characterize the conditional distribution of xk, which further

enables the derivation of the optimal filter. The Gaussian property holds for any offline sensor schedule. For

the deterministic event-triggering scheme above (the threshold is pre-defined and time-invariant), however, the

conditional distribution of xk is not necessarily Gaussian [25], which renders the optimal estimator design problem

intractable.

In this paper, we assume that the sensor follows a stochastic decision rule. To be more specific, at every time step

k, the sensor generates an independent and identically distributed (i.i.d.) random variable ζk, which is uniformly

distributed over [0, 1]. The sensor then compares ζk with a function ϕ(yk, ŷ
−
k ), where ϕ(yk, ŷ

−
k ) : Rm×Rm → [0, 1].

The sensor transmits if and only if ζk > ϕ(yk, ŷ
−
k ). In other words,

γk =

0, ζk ≤ ϕ(yk, ŷ
−
k )

1, ζk > ϕ(yk, ŷ
−
k )

. (8)

Remark 2. Since ζk is uniformly distributed, one can interpret ϕ(yk, ŷ
−
k ) as the probability of idle and 1−ϕ(yk, ŷ

−
k )

as the probability of transmitting for the sensor. The event-triggering scheme in (8) represents a large class of

triggering mechanism. Note that the deterministic decision rule proposed by Wu et al. [25] can be put into this

framework by setting the co-domain of ϕ to the set {0, 1}. However, only by an appropriate choice of ϕ(yk, ŷ
−
k )

can we find a tractable MMSE estimator.
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In this paper, we propose the following two choices of the function ϕ such that there is a tractable MMSE

estimator under the event-triggered schedule:

1) Open-Loop: We assume that ϕ only depends on the current measurement yk. We choose ϕ(yk, ŷ
−
k ) = µ(yk),

where the function µ(y) is defined as:

µ(y) , exp

(
−1

2
yTY y

)
, (9)

with Y ∈ Sm++.

2) Closed-Loop: We assume that the sensor receives a feedback ŷ−k from the estimator before making the decision.

Therefore, the sensor can compute the innovation zk = yk − ŷ−k . As a result, we choose ϕ(yk, ŷ
−
k ) = ν(zk),

where ν(z) is defined as:

ν(z) , exp

(
−1

2
zTZz

)
, (10)

with Z ∈ Sm++.

Remark 3. We only consider the open-loop schedule function in a stable system scenario since yk will grow

unbounded in an unstable system, which results that γk = 1 almost surely after the dynamic system runs for a

sufficient long time. On the contrary, there is no such restriction on the closed-loop schedule. More discussion will

be given in Section IV.

Note that µ (ν) is proportional to the probability density function (pdf) of a Gaussian random variable (only

missing the coefficient). The choices of these two general forms are not ad hoc but with intrinsic motivations and

reasons.

1) If yk (zk) is small, then with a large probability the sensor will be in the idle state. On the other hand, if yk

(zk) is large, then the sensor will be more likely to send yk. As a consequence, even if the estimator does not

receive yk, it can still exploit the information that yk is more likely to be small to update the state estimate.

This is the main advantage over an offline sensor schedule, where no information about xk can be inferred

when yk is dropped.

2) The similarity of µ (ν) and the pdf of a Gaussian random variable will play a key role in the derivation of

the optimal MMSE estimator. This design together with the random variable ζk will avoid the nonlinearity

introduced by the truncated Gaussian prior conditional distribution of the system state.

3) The parameter Y (Z) introduces one degree of freedom of system design to balance the tradeoff between the

communication rate and the estimation performance.

We aim to give answers to the following questions in the rest of this paper.

1) Given the stochastic event-triggered scheduler (8), (9) and (8), (10), what are the MMSE estimators respectively?

2) Is the remote estimator corresponding to the closed-loop case stable when working for an unstable system,

i.e., whether the error covariance sample path and the mean of the error covariance are bounded?
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3) What is the average communication rate and the average estimation error covariance in both cases?

4) How should Y (or Z) be chosen to satisfy different design goals?

III. MMSE ESTIMATOR DESIGN

A. Open-Loop Stochastic Event-Triggered Scheduling

We first consider the MMSE estimator for the open-loop case, which is given by the following theorem.

Theorem 1. Consider the remote state estimation in Fig. 1 with the open-loop event-triggered scheduler (8)-(9).

Then xk conditioned on Ik−1 is Gaussian distributed with mean x̂−k and covariance P−k , and xk conditioned on Ik
is Gaussian distributed with mean x̂k and covariance Pk, where x̂−k , x̂k and Pk, P−k satisfy the following recursive

equations:

Time update:

x̂−k = Ax̂k−1, (11)

P−k = APk−1A
T +Q. (12)

Measurement update:

x̂k = x̂−k + γkKkyk −KkE[yk|Ik−1] (13)

= (I −KkC)x̂−k + γkKkyk, (14)

Pk = P−k −KkCP
−
k , (15)

where

Kk = P−k C
T
[
CP−k C

T +R+ (1− γk)Y −1
]−1

, (16)

with initial condition

x̂−0 = 0, P−0 = Σ0. (17)

Before we present the proof for Theorem 1, we need the following result, the proof of which is reported in the

appendix.

Lemma 1. Let Φ > 0 partitioned as

Φ =

 Φxx Φxy

ΦTxy Φyy

 ,
where Φxx ∈ Rn×n, Φxy ∈ Rn×m and Φyy ∈ Rm×m. The following equation holds

Φ−1 +

 0 0

0 Y

 = Θ−1,

where

Θ =

 Θxx Θxy

ΘT
xy Θyy

 ,
July 7, 2015 DRAFT
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and

Θxx = Φxx − Φxy(Φyy + Y −1)−1ΦTxy,

Θxy = Φxy(I + Y Φyy)−1,

Θyy = (Φ−1yy + Y )−1.

Proof of Theorem 1: We prove the theorem by induction. Since I−1 = ∅, x0 is Gaussian and (17) holds. We

first consider the measurement update step. Assume that xk conditioned on Ik−1 is Gaussian with mean x̂−k and

covariance P−k . We consider two cases depending on whether the estimator receives yk.

1) γk = 0:

If γk = 0, then the estimator does not receive yk. Consider the joint conditional pdf of xk and yk,

f(xk, yk|Ik) = f(xk, yk|γk = 0, Ik−1)

=
Pr(γk = 0|xk, yk, Ik−1)f(xk, yk|Ik−1)

Pr(γk = 0|Ik−1)

=
Pr(γk = 0|yk)f(xk, yk|Ik−1)

Pr(γk = 0|Ik−1)
.

(18)

The second equality follows from the Bayes’ theorem and the last one holds since γk is conditionally

independent with (Ik−1, xk) given yk. Let us define the covariance of [xTk , y
T
k ]T given Ik−1 as

Φk ,

 P−k P−k C
T

CP−k CP−k C
T +R

 . (19)

From (9), we have

Pr(γk = 0|yk) = Pr

(
exp(−1

2
yTk Y yk)≥ζk

∣∣∣∣∣yk
)

= exp(−1

2
yTk Y yk). (20)

From (18), (19), and (20), we have

f(xk, yk|Ik) = αk exp(−1

2
θk),

where

αk =
1

Pr(γk = 0|Ik−1)
√

det(Φk)(2π)m+n

and

θk =

 xk − x̂−k
yk − ŷ−k

T Φ−1k

 xk − x̂−k
yk − ŷ−k

+ yTk Y yk. (21)

Manipulating (21) and by Lemma 1, one has

θk =

 xk − x̄k
yk − ȳk

T Θ−1k

 xk − x̄k
yk − ȳk

+ ck,
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where

x̄k = x̂−k − P
−
k C

T (CP−k C
T +R+ Y −1)−1ŷ−k ,

ȳk =
[
I + Y (CPCT +R)

]−1
ŷ−k ,

ck = (ŷ−k )T (CP−k C
T +R+ Y −1)−1ŷ−k ,

and

Θk =

 Θxx,k Θxy,k

ΘT
xy,k Θyy,k

 ,
with

Θxx,k = P−k − P
−
k C

T (CP−k C
T +R+ Y −1)−1CP−k ,

Θxy,k = P−k C
T
[
I + Y (CP−k C

T +R)
]−1

,

Θyy,k =
[
(CP−k C

T +R)−1 + Y
]−1

.

Thus,

f(xk,yk|Ik) = αk exp
(
−ck

2

)
× exp

−1

2

 xk − x̄k
yk − ȳk

T Θ−1k

 xk − x̄k
yk − ȳk


 .

Since f(xk, yk|Ik) is a pdf, ∫
Rn

∫
Rm

f(xk, yk|Ik)dxkdyk = 1,

which implies that

αk exp
(
−ck

2

)
=

1√
det(Θk)(2π)n+m

.

As a result, xk, yk are jointly Gaussian given Ik, which implies that xk is conditionally Gaussian with mean

x̄k and covariance Θxx,k. Therefore, (13) and (15) hold when γk = 0.

2) γk = 1:

If γk = 1, then the estimator receives yk. Hence

f(xk|Ik) = f(xk|γk = 1, yk, Ik−1)

=
Pr(γk = 1|xk, yk, Ik−1)f(xk|yk, Ik−1)

Pr(γk = 1|yk, Ik−1)

=
Pr(γk = 1|yk)f(xk|yk, Ik−1)

Pr(γk = 1|yk)

= f(xk|yk, Ik−1).

The second equality is due to Bayes’ theorem and the third equality uses the conditional independence

between γk and (Ik−1, xk) given yk. Since yk = Cxk + vk and xk, vk are conditionally independently

Gaussian distributed, xk and yk are conditionally jointly Gaussian which implies that f(xk|Ik) is Gaussian.
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As f(xk|yk, Ik−1) represents the measurement update of the standard Kalman filter, following the standard

Kalman filtering [32], we have

f(xk|Ik) ∼ N (x̂−k +Kk(yk − Cx̂−k ), P−k −KkCP
−
k ).

Finally we consider the time update. Assume that xk conditioned on Ik is Gaussian distributed with mean x̂k

and covariance Pk.

f(xk+1|Ik) = f(Axk + wk|Ik).

Since xk and wk are conditionally mutually independent Gaussian, we have

f(xk+1|Ik) ∼ N (Ax̂k, APkA
T +Q),

which completes the proof.

For brevity, we refer to the MMSE estimator (11)–(16) under the open-loop stochastic event-triggered scheduling

scenario as the OLSET-KF in the sequel. The counterpart (22)–(26) in the closed-loop case is abbreviated as CLSET-

KF. Comparing (11)-(16) with the standard Kalman filtering update equations (3)-(7), one notes that the difference

lies in the measurement update when γk = 0. The a posteriori error covariance recursion is updated with the same

form of Kalman gain as that of standard Kalman filter but with an enlarged measement noise covariance R+Y −1.

To make further comparison with the MMSE estimator where the observation is randomly dropped, we have the

following result from [33]:

x̂−k = Ax̂k−1,

P−k = APk−1A
T +Q,

x̂k = x̂−k + γkKk(yk − Cx̂−k ),

Pk = P−k − γkKkCP
−
k ,

where

Kk = P−k C
T
[
CP−k C

T +R
]−1

.

When γk = 0 the a posteriori estimate (14) no longer equals to the a priori estimate but a scaled a priori

estimate with a coefficient depending on the modified Kalman gain. The larger noise covariance is induced by

the uncertainty brought by the stochastic event. Such an uncertainty, however, successfully eliminates the need of

Gaussian approximation as in [25], [28], [34], and leads to a simple and exact solution of the MMSE estimator.

B. Closed-Loop Stochastic Event-Triggered Scheduling

In this section we discuss the closed-loop case, where the estimator feeds ŷ−k back to the sensor. The MMSE

estimator incorporating the event-triggering mechanism (8) and (10) is given by the following theorem.

July 7, 2015 DRAFT



12

Theorem 2. (CLSET-KF) Consider the remote state estimation in Fig. 1 with the closed-loop event-triggered

scheduler (8) and (10). Then xk conditioned on Ik−1 is Gaussian distributed with mean x̂−k and covariance P−k ,

and xk conditioned on Ik is Gaussian distributed with mean x̂k and covariance Pk, where x̂−k , x̂k and Pk, P
−
k

satisfy the following recursive equations:

Time update:

x̂−k = Ax̂k−1, (22)

P−k = APk−1A
T +Q. (23)

Measurement update:

x̂k = x̂−k + γkKkzk, (24)

Pk = P−k −KkCP
−
k , (25)

where

Kk = P−k C
T
[
CP−k C

T +R+ (1− γk)Z−1
]−1

, (26)

with initial condition

x̂−0 = 0, P−0 = Σ0.

Proof: Theorem 2 can be proved in a similar style as Theorem 1. Briefly speaking, by substituting yk into zk

in the proof of Theorem 1, one can obtain the results above. Substituting yk by zk in (13), one can notice that

x̂k = x̂−k + γkKkzk −KkE[zk|Ik−1] = x̂−k + γkKkzk,

since E[zk|Ik−1] = 0, which is consistent with (24).

Note that the error covariance recursion (25)-(26) also keep the same form as the standard Kalman filter but

with a modified Kalman gain when γk = 0. Since the event uses the zero-mean zk instead of yk, the optimal a

posteriori estimate is the a priori estimate itself compared with a scaled a prior estimate in OLSET-KF.

IV. PERFORMANCE ANALYSIS

The main goal of the proposed scheduler is to reduce the frequency of communication between the sensor and

the estimator in a smart manner, compared with the classical periodic communication strategy. In this section, we

study the average communication rate and the estimation performance (P−k ) given an OLSET-KF or a CLSET-KF.

The expected sensor-to-estimator communication rate is defined as

γ , lim sup
N→∞

1

N

N−1∑
k=0

E[γk].

With the knowledge of γ, we can make a better understanding of the sensor power systems and the communication

channel. More specifically, we can analyze
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1) the duty cycle of the sensor in a slow-varying environment, i.e., the sensor switches between transmitting mode

and off-transmitting mode,

2) the extended lifetime of a battery-powered sensor,

3) the bandwidth required by the intermittent data stream, etc.

Since we adopt a stochastic decision rule to determine γk, i.e., the sequence {γk}∞0 is random, the MMSE

estimator iteration is stochastic. Thus only statistical properties of P−k can be obtained. In this section, we study

the mean stability of the two MMSE estimators and provide an upper and lower bound on limk→∞ E[P−k ]. For

notational simplicity, we define some matrix functions.

Definition 1. Define the following matrix functions:

gW (X) , AXAT +Q−AXCT (CXCT +W )−1CXAT ,

ΓW (X) ,
[
A(X + CTW−1C)−1AT +Q

]−1
,

where X > 0 and W > 0. We further define

g0W (X) = X, gk+1
W (X) = gW (gkW (X)),

Γ0
W (X) = X, Γk+1

W (X) = ΓW (ΓkW (X)).

By Theorem 1, for OLSET-KF,

P−k+1 = gR+(1−γk)Y −1(P−k ).

Similarly for CLSET-KF,

P−k+1 = gR+(1−γk)Z−1(P−k ).

Furthermore, applying the matrix inversion lemma,[
ΓW (X−1)

]−1
= gW (X).

The proof of the following important properties of g and Γ can be found in [35].

Proposition 1. Assume that Q,W > 0 and (A,Q) is detectable. For all X,Y ∈ Sn+, we have the following

properties.

1) Monotonicity: If X ≥ Y , then gW (X) ≥ gW (Y ), ΓW (X) ≥ ΓW (Y );

2) Existence and Uniqueness of a fixed point: There exists a unique positive-definite X∗ such that:

X∗ = gW (X∗), X
−1
∗ = ΓW (X−1∗ );

3) Limit property of the iterated function:

lim
k→∞

gkW (X) = X∗, lim
k→∞

ΓkW (X) = X−1∗ .
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A. Open-Loop Schedule

We now present some properties on the communication rate and the characteristics of the error covariance. In

this subsection, we assume that the system (1) is stable. The analytical results for an unstable system are trivial

since γk = 1 almost surely occurs after a long time. A clock-synchronization mechanism for both the sensor and

the estimator may be helpful for an unstable system like [36], which can be left as future work. For stable systems,

define Σ as the solution of the following Lyapunov equation

Σ = AΣAT +Q, (27)

and define Π as

Π , CΣCT +R.

One can verify that

lim
k→∞

Cov(xk) = Σ, lim
k→∞

Cov(yk) = Π.

The sketch of the proof is as follows. Define an operator L(X) = AXA′+Q and thus Cov(xk+1) = L(Cov(xk)).

According to [33, Theorem 1] by setting λ = 0, we can conclude limk→∞Cov(xk) is equal to the solution of the

Lyapunov equation above.

In the sequel, we assume the system is already in the steady state, which implies that

Cov(xk) = Σ, Cov(yk) = Π.

We are now ready to give some properties on the communication rate and the characteristics of the error covariance

for the open-loop schedule.

Theorem 3. Consider system (1) with event-triggered scheduler (8)-(9). If the system is stable, i.e., ρ(A) < 1, the

following properties hold.

a) Communication rate: The communication rate γ is given by

γ = 1− 1√
det(I + ΠY )

. (28)

b) Ergodicity: The following equality almost surely holds

lim
N→∞

1

N

N−1∑
k=0

γk
a.s.
= γ. (29)

Furthermore, for any integer l ≥ 0, define the event of l sequential packet drops to be

Ek,l , {γk = 0, . . . , γk+l−1 = 0},

and the event of l sequential packet arrivals to be

Ek,l , {γk = 1, . . . , γk+l−1 = 1}.

Then almost surely Ek,l and Ek,l happen infinitely often.
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c) Upper and lower bound on P−k : For any ε > 0, there exists an N , such that for all k ≥ N , the following

inequalities hold.

X0 − εI ≤ P−k ≤ Xol + εI.

where X0 is the unique solution of

X = gR(X),

and Xol is the unique solution of

X = gR+Y −1(X).

Furthermore, for any ε > 0, almost surely the following inequalities hold for infinitely many k’s

P−k ≥ Xol − εI,

P−k ≤ X0 + εI.

d) Asymptotic upper and lower bound on E[P−k ]: E[P−k ] is asymptotically bounded by

Xol ≤ lim
k→∞

E[P−k ] ≤ Xol,

where Xol is the unique positive-definite solution to

gR1(X) = X,

with

R1 =
(
γR−1 + (1− γ)(R+ Y −1)−1

)−1
.

The proof is reported in the appendix. The equation (29) implies that for almost every sample path, the average

communication rate over time is indeed the expected communication rate γ. The two statements in Theorem 3.c

imply that P−k is oscillating between X0 and Xol. Hence, X0 and Xol can be seen as the best and worst-case

performance of OLSET-KF respectively.

Remark 4. Since the recursive update function of P−k depends on the realization of γk and the distribution of γk

is a nonlinear function of P−k , finding the closed-form solution of limk→∞ E[P−k ] is a formidable task which can

be left as future work.

B. Closed-Loop Schedule

Now we consider the closed-loop case. Note that unlike the open-loop case there is no assumption on the system

matrix A. However, the innovation zk depends on the packet arrival process {γk}, while yk is independent of {γk}

for OLSET-KF. As a result, the distribution of ζk is more complicated and therefore the analysis for CLSET-KF

is more difficult. The following theorem illustrates the properties of communication rate and characteristics of the

error covariance in the CLSET-KF.
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Theorem 4. Consider any stable or unstable system (1) with closed-loop event-based scheduler (8), (10). The

following properties hold.

a) Communication rate: The communication rate γ is upper bounded by γ, where

γ = 1− 1√
det(I + (CXclCT +R)Z)

,

and γ is lower bounded by γ where

γ = 1− 1√
det(I + (CX0CT +R)Z)

.

b) Upper and lower bound on P−k : For any ε > 0, there exists an N , such that for all k ≥ N , the following

inequalities hold.

X0 − εI ≤ P−k ≤ Xcl + εI,

where X0 is the unique solution of

X = gR(X),

and Xcl is the unique solution of

X = gR+Z−1(X).

c) Asymptotic upper and lower bound on E[P−k ]: E[P−k ] is asymptotically bounded by

Xcl ≤ lim
k→∞

E[P−k ] ≤ Xcl,

where Xcl is the unique positive-definite solution to

gR3
(X) = X,

with

R3 =
(
γR−1 + (1− γ)(R+ Z−1)−1

)−1
.

The proof is given in the appendix.

Remark 5. Theorem 4.b indicates that P−k is uniformly bounded regardless of the packet arrival process {γk} and

Z. The inherent stability of the CLSET-KF with no restrict on Z is of great significance since Z can be adjusted

to achieve arbitrarily small communication rate. For the deterministic event-triggered scheduler proposed in [26],

there exists a critical threshold for the communication rate, only above which the mean stability can be guaranteed.

In other words, a minimum transmission rate has to be ensured for stabilizing the expected error covariance, which

limits the scope of the design. Furthermore, the boundedness of the mean does not imply the boundedness of the

sample path. Hence, for a given sample path, it is possible that an arbitrary large P−k occurs. The nice stability

property of our proposed scheduler extends its use when very limited transmission is requested.
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Remark 6. Note that the covariance of zk is smaller than the covariance of yk. Thus, with the same communication

rate, the matrix Z for the closed-loop schedule is larger than Y for the open-loop schedule. As a result, the closed-

loop schedule achieves better performance compared with the open-loop schedule. Furthermore, the closed-loop

schedule can be used for both stable and unstable systems while the open-loop schedule only works for stable

systems. An open-loop schedule, however, does not require feedbacks from the estimator and hence is easier to

implement.

V. DESIGN OF EVENT PARAMETER

For different practical purposes, one may want to find a Y (or Z) to optimize the estimation performance subject

to a certain communication rate, or to minimize the communication rate subject to some performance requirement.

We first focus on OLSET-KF. For a scalar system, one may obtain a scalar parameter Y from (28) to satisfy

a specific average error covariance requirement. The communication rate γ is then uniquely determined, i.e., the

average communication rate is a 1-to-1 mapping to the average error covariance. The case of vector-state systems,

however, is dramatically different. For instance, a constraint on error covariance corresponds to a set of Y and

thus different γ, which we try to minimize to save bandwidth and sensor power. Moreover, different choices of

performance metric such as Frobenius norm of average error covariance or trace of peak error covariance serve

a wide range of design purposes, which yield many different optimization problems. In particular, the worst-case

estimation error covariance, i.e., Xol, may be of primary concern for safety-critical systems. We study such a

problem here:

Problem 5.

min
Y >0

γ (30)

s.t. Xol ≤ ∆0, (31)

where ∆0 ∈ Sn++ is a matrix-valued bound.

When the measurement yk is a scalar, i.e., C ∈ R1×n, minimizing γ in (28) is equivalent to minimizing ΠY ,

which is a convex optimization problem. When yk is a vector, minimizing γ is not a convex optimization problem

because (28) is log-concave with Y . We resort to relaxing the objective function and reformulate it into a convex

optimization problem. For that we have to find a convex upper bound of γ. The following lemma is useful for

relaxing the objective function.

Lemma 2. Given γ in (28) and Π ∈ Sm++, Y ∈ Sm++, the following inequality holds,

1− (1 + tr(ΠY ))−
1
2 < γ < 1− exp(−1

2
tr(ΠY )).

The proof is given in the appendix. From Lemma 2, min γ is relaxed into min{1 − exp(−tr(ΠY )/2)}, or

equivalently, min tr(ΠY ). Problem 5 is then relaxed to be
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Problem 6.

min
Y >0

tr(ΠY ) (32)

s.t. Xol ≤ ∆0. (33)

Before we show the main theorem on how to solve the optimization problem above, we first present a lemma as

follows.

Lemma 3. The following two statements are equivalent:

1) Xol ≤ ∆0, where Xol satisfies gR+Y −1(Xol) = Xol, Y > 0,

2) There exists 0 < X ≤ ∆0 such that

gR+Y −1(X) ≤ X, Y > 0. (34)

Proof:

“1)⇒ 2)”

Let X be equal to Xol. It is easy to see Xol is a feasible matrix satisfying (34).

“2)⇒ 1)”

From Proposition 1, we have

∆0 ≥ X ≥ gR+Y −1(X) ≥ g2R+Y −1(X) ≥ · · · ≥ lim
k→∞

gkR+Y −1(X) = Xol,

which completes the proof.

The following result is used to find an optimal solution to the relaxed optimization problem.

Theorem 7. The optimal Y ∗ that satisfies the optimization Problem 6 can be found by solving the following convex

optimization problem:

min
Y >0

tr(ΠY )

s.t.
S +ATQ−1A+ CTR−1C ATQ−1 CTR−1

Q−1A Q−1 − S 0

R−1C 0 Y +R−1

 ≥ 0,

S I

I ∆0

 ≥ 0, Y > 0.

Proof: To prove the theorem, we need to show that Xol ≤ ∆0 holds if and only if the above LMIs hold. From

Lemma 3 we know that Xol ≤ ∆0 is equivalent to: there exists 0 < X ≤ ∆0 such that

gR+Y −1(X) ≤ X, Y > 0. (35)
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Taking inverse of both sides of (35) and letting S = X−1, we have the following equivalent statement:

S ≥ ∆−10 , (36)

Y > 0, (37)[
A
(
S + CT (R+ Y −1)−1C

)−1
AT +Q

]−1
− S ≥ 0, (38)

where the last inequality holds by applying the matrix inversion lemma. It is straightforward to see that by the

Schur complement condition

S ≥ ∆−10 ⇔

S I

I ∆0

 ≥ 0. (39)

Apply the matrix inversion lemma to the inequality (38), we have

Q−1 − S −Q−1A
[
S +ATQ−1A+ CT (R+ Y −1)−1C

]−1
ATQ−1 ≥ 0. (40)

Since R > 0, Y > 0, S > 0, Q > 0, we have

S +ATQ−1A+ CT (R+ Y −1)−1C > 0. (41)

Then by the Schur complement condition for its positive semi-definiteness, (40) and (41) are equivalent toS +ATQ−1A+ CT (R+ Y −1)−1C ATQ−1

Q−1A Q−1 − S

 ≥ 0. (42)

Expanding (R+ Y −1)−1 in the left corner term by the matrix inversion lemma, we haveS +ATQ−1A+ CTR−1C ATQ−1

Q−1A Q−1 − S

−
CTR−1

0

 (Y +R−1)−1
[
R−1C 0

]
≥ 0. (43)

The equations (43) and Y +R−1 > 0 are equivalent to
S +ATQ−1A+ CTR−1C ATQ−1 CTR−1

Q−1A Q−1 − S 0

R−1C 0 Y +R−1

 ≥ 0. (44)

Combining (37), (39) and (44), we can conclude the proof.

Let the true optimal solution to Problem 5 be Y opt and the minimum objective be γopt, and Y ∗ be the solution

to Problem 6. Then we can show the following inequalities holds

1− 1√
1 + tr(ΠY ∗)

≤ 1− 1√
1 + tr(ΠY opt)

, (45)

1− 1√
1 + tr(ΠY opt)

≤ γopt, (46)

1− 1√
det(I + ΠY opt)

≤ 1− 1√
det(I + ΠY ∗)

. (47)

The first inequality is due to the optimality of tr(ΠY ∗) in Problem 6, i.e., tr(ΠY ∗) ≤ tr(ΠY opt), and the

monotonicity of the function 1 − 1√
1+x

, x ∈ R, x > 0. The second inequality is from Lemma 2. The last
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inequality due to the optimality of tr(ΠY ∗) in Problem 5, i.e., γopt ≤ γY
∗
, where γY

∗
is the corresponding

communication rate using Y ∗.

Define the optimality gap κ as

κ ,

(
1− 1√

det(I + ΠY ∗)

)
− γopt.

By (47),

κ ≤ 1√
1 + tr(ΠY ∗)

− 1√
det(I + ΠY ∗)

.

Hence, we know how good the approximation is when we solve Problem 6 for tr(ΠY ).

Remark 7. Suppose we replace the constraint Xol ≤ ∆0 by a general constraint f(Xol) ≤ 0. If the function f(X)

is monotonically increasing and convex, such as tr(X), then it could be solved in a similar fashion. To be specific,

the constraints f(Xol) ≤ 0 is equivalent to

Xol ≤ ∆0, f(∆0) ≤ 0.

and the problem hence is solved using the same LMI method proposed in Theorem 7.

The design procedure for the CLSET-KF is similar except for using the upper bound of γ instead of γ.

VI. SIMULATION EXAMPLES

To demonstrate the aforementioned analytical results and show the merit of the proposed schedulers, we present

some examples in three subsections. In Subsection VI-A, we compare the estimation performance limk→∞ E[P−k ] of

the open-loop scheduler and the closed-loop scheduler under the same communication rate and show the advantage

of both proposed schedulers over the periodic and random offline schedulers. Periodic offline schedulers send data

packets in a deterministic and periodic pattern, i.e., 11101110 . . . or 100100 . . ., where “1” means transmission and

“0” means not. Random offline schedulers send the data packet with a fixed probability which is equal to γ at each

time step. In addition, we illustrate the asymptotic bounds of E[P−k ] of both proposed schedulers. In Subsection

VI-B, we give an example to compute the suboptimal γ with estimation performance constraint and show that the

gap between the suboptimal solution and the true optimal solution is very small. In Subsection VI-C, we consider

a concrete target tracking problem setting and compare CLSET-KF and the deterministic event-triggered scheduler

(DET-KF) in [25] under the same communication rate. By varying the communication rate constraint, we can see

that our design has a distinct advantage over the existing work.

A. Performance of OLSET-KF and CLSET-KF

To compare the performance of the open-loop scheduler and closed-loop scheduler, we consider a scalar stable

system with parameters A = 0.8, C = 1, Q = 1, R = 1. For reference we also list another two offline schedulers,

i.e., random and periodic schedulers. The expectation is taken over 50000 simulation runs. The results are shown in

Fig. 2, from which one can see that both open-loop event-based scheduler and closed-loop event-based scheduler
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Fig. 2. Asymptotic expected error covariance limk→∞ E[P−k ] under four scheduling strategies versus communication rate γ.
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Fig. 3. Trace of asymptotic upper bound Xol and the trace of asymptotic lower bound Xol of E[P−k ] of the open-loop event-based schedule.

outperform the offline schedulers. Moreover, the closed-loop event-based scheduler performs better than the open-

loop one since more information is accessible at the sensor, which is discussed in Remark 6.

To illustrate the asymptotic bounds of E[P−k ] for an OLSET-KF, consider a stable system

A =

0.8 0

0 0.95

 , C =
[
1 1

]
, Q =

1 0

0 1

 , R = 1

with the OLSET-KF. The number of simulation runs is 50000. Fig. 3 shows the trace of upper and lower bounds

of E[P−k ]. Similarly, Fig. 4 shows the simulation for an unstable system

A =

1.001 0

0 0.95

 , C =
[
1 1

]
, Q =

1 0

0 1

 , R = 1

with the CLSET-KF. Note that only CLSET-KF can work with unstable systems. We can notice that the trace of
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Fig. 4. Trace of asymptotic upper bound Xcl and the trace of asymptotic lower bound Xcl of E[P−k ] of the closed-loop event-based schedule.

bounds for both cases is tighter when γ is larger.

B. Design of Event Parameter

Optimization problems like Problem 5 are often encountered when one designs an OLSET-KF to obtain a desirable

tradeoff between the communication rate and the estimation quality. Consider a stable system

A =

0.8 1

0 0.95

 , C =

0.5 0.3

0 1.4

 , Q =

1 0

0 1

 , R =

1 0

0 1

 .
Note that

P =

2.2170 0.3217

0.3217 1.3184


is the unique positive-definite solution to X = gR(X). Consider Problem 5 with the constraint

Xol < P +$I,

where $ is a positive real number. By varying $, we can obtain the suboptimal solution following Theorem 7,

from which we can see that the suboptimal solution equals to the true optimal solution when $ is large, i.e., when

the communication rate is small.

C. Comparison between CLSET-KF and DET-KF

To show the dominant advantage of our CLSET-KF over the existing DET-KF, we consider a target tracking

problem [37] where a sensor is deployed to track the state xk which consists of the position, speed and acceleration

of the target. The system dynamics is given by [37],

xk+1 =


1 T T 2

0 1 T

0 0 1

xk + uk,

July 7, 2015 DRAFT



23

0 0.2 0.4 0.6 0.8 1

0.9

0.95

1

$

Suboptimal γY
∗

Lower bound of γopt

Fig. 5. Suboptimal solution to Problem 5 under different constraints. The matrix-valued bound is in the form of $I .

where T is the sampling period and uk is the additive Gaussian noise with the covariance

2ασ2
m


T 5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2

T 3/6 T 2/2 T

 ,
where σ2

m is the variance of the target acceleration and α is the reciprocal of the maneuver time constant. Assume

the sensor periodically measures the target position, speed and acceleration. The observation model is

yk =


1 0 0

0 1 0

0 0 1

xk + vk.

The variance of the additive Gaussian observation noise is R = I3×3. The system parameters are set to T =

1s, α = 0.01, σ2
m = 5.

In the first experiment, we assume the the transmission bandwidth is moderately large and the communication

rate cannot exceed 0.65. The CLSET-KF is used for the tracking task with Z = 0.52 × I3×3 and for comparison

DET-KF in [25] is also used with the threshold being 1.60, where the parameters are carefully designed to satisfy the

communication rate limitation. A Monte Carlo simulation with 10000 runs for k = 1, . . . , 100 shows the estimation

performance represented by the variance of the target position error, P11 of the CLSET-KF and DET-KF. Fig. 6

reveals that the empirical P11 of the CLSET-KF, precisely described by the theoretical results, is smaller than that of

the DET-KF. Specifically, the empirical asymptotic P11 of CLSET-KF is 0.7991 and the theoretical value is 0.7994,

while the empirical asymptotic P11 of DET-KF is 1.1169 and the theoretical value is 1.1374. The deviations of

CLSET-KF and DET-KF are 0.0375% and 1.835% respectively.

In the second experiment, we assume that the communication rate is limited to 0.25 due to the severely scarce

resources. The CLSET-KF with Z = 0.047 × I3×3 and the DET-KF with the threshold 4.30 are used. Fig. 7
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Fig. 6. Variance of the target position error of CLSET-KF and DET KF with average communication rate being 0.65
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Fig. 7. Variance of the target position error of CLSET-KF and DET KF with average communication rate being 0.25

clearly shows that the CLSET-KF recursions in Theorem 2 still exactly characterize the empirical estimation error

covariance evolution and thus provide a reliable estimate of the state. The empirical asymptotic P11 of CLSET-KF

is 4.6367 and the theoretical value is 4.6301. The deviation is 0.1423%. On the contrary, the theoretical error

covariance given by the DET-KF cannot match the empirical error covariance no longer. The empirical asymptotic

P11 of DET-KF is 7.3843 and the theoretical value is 18.3223. The deviation is 148.1%. That means that the

approximate MMSE estimator is invalid and the approximate measurement update need to be re-examined.

Remark 8. As shown in the previous sections, the merit of our stochastic event-triggered scheduler is the preserva-

tion of Gaussian properties of measurement update when no measurements arrive. For the deterministic event-based
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schedule in [25] and [26], a Gaussian distribution of the predicted density is assumed to solve the intractable non-

linear filtering problem heuristically. This approximation only works well in the circumstance that the transmission

rate is high. When measurements are missing consecutively for a long time, the Gaussian assumption is no longer

valid and therefore the approximate MMSE estimator cannot be used.

VII. CONCLUSION

This paper presents two stochastic event-triggered scheduling schemes for remote estimation and derives the exact

MMSE estimator under each schedule, i.e., OLSET-KF and CLSET-KF. The stochastic nature of the proposed

schedules preserves the Gaussian property of the innovation process and thus produces a simple linear filtering

problem compared to the previous works involving complicated nonlinear and approximate estimation. The average

sensor-to-estimator communication rate and the expected prediction error covariance are investigated for the two

filters. Based on the analytical performance results and the proposed algorithm, one can design a suboptimal

stochastic event to minimize the communication rate under the constraint on the estimation quality. Optimal design

of event parameter Y (or Z) satisfying different design goals is an interesting topic and is left as future work. The

simulation results indicate the two schedules effectively reduce the estimation error covariance compared with the

offline ones under the same communication rate. By testing CLSET-KF and DET-KF in the target tracking model,

we show the advantage of the stochastic event-triggering mechanism over the deterministic one. Future work also

includes multiple sensors event-based scheduling and searching for tighter asymptotic bounds of E[P−k ].

APPENDIX

Proof of Lemma 1: Define matrix ∆ as

∆ , Φ−1 =

 ∆xx ∆xy

∆T
xy ∆yy

 .
Hence

Θ =

 ∆xx ∆xy

∆T
xy ∆yy + Y

−1 .
Applying the matrix inversion lemma, the following equality holds:

Φ−1yy = ∆yy −∆T
xy∆−1xx∆xy,

Θ−1yy = ∆yy + Y −∆T
xy∆−1xx∆xy.

Therefore,

Θyy = (∆yy + Y −∆T
xy∆−1xx∆xy)−1 = (Φ−1yy + Y )−1.

Moreover, we have

∆xxΦxy + ∆xyΦyy = ∆xxΘxy + ∆xyΘyy = 0,

which implies that

Θxy = −∆−1xx∆xyΘyy = ΦxyΦ−1yy Θyy = Φxy(I + Y Φyy)−1.
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Finally,

Θxx =
[
∆xx −∆xy(∆yy + Y )−1∆T

xy

]−1
= ∆−1xx + ∆−1xx∆xy(∆yy + Y −∆T

xy∆−1xx∆xy)−1∆T
xy∆−1xx

= Φxx − ΦxyΦ−1yy ΦTxy + ΦxyΦ−1yy (Φ−1yy + Y )−1Φ−1yy ΦTxy.

Since

(Φ−1yy + Y )−1 = Φyy − Φyy(Φyy + Y −1)−1Φyy,

we have

Θxx = Φxx − ΦxyΦ−1yy ΦTxy + ΦxyΦ−1yy ΦTxy − Φxy(Φyy + Y −1)−1ΦTxy

= Φxx − Φxy(Φyy + Y −1)−1ΦTxy,

which finishes the proof.

Proof of Theorem 3: (a). By the linearity of the system, yk is Gaussian distributed with zero mean. From (9),

we know that

Pr(γk = 0) = Pr

(
ζk ≤ exp

(
−1

2
yTk Y yk

))
= E

[
exp

(
−1

2
yTk Y yk

)]
=

∫
Rm

exp
(
− 1

2y
T
k (Π−1 + Y )yk

)√
det(Π)(2π)m

dyk

=
1√

det(I + ΠY )

∫
Rm

exp
(
− 1

2y
T
k (Π−1 + Y )yk

)√
det((Π−1 + Y )−1)(2π)m

dyk

=
1√

det(I + ΠY )
,

where the last equality is due to the fact that the integration of a pdf function over the entire space is equal to 1.

Hence,

γ = 1− 1√
det(I + ΠY )

.

(b). Define ξk , [xTk , y
T
k , ζk]T and ξ , (ξ0, ξ1, . . . ) as the infinite sequence of ξk. It is easy to see that ξk is

Markov. Let P (ξ, F ) , P (ξ1 ∈ F |ξ0 = ξ) be the transition probability of the Markov process. Define T k to be

the (left) shift operator, i.e.,

T k : (ξ0, ξ1 . . . )→ (ξk, ξk+1, . . . ).

Let π be the probability measure of ξk. Since we assume that the system is in steady state, π is stationary. Moreover,

since A is stable, it is easy to verify that the Lyapunov equation (27) admits a unique solution, which implies that

π is unique.
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Define Pπ be the probability measure of ξ generated by π and the transition probability P (ξ, F ). By [38, Theorem

3.8], Pπ is ergodic with respect to the shift operator T k. Meanwhile, by definition

γk = Iζk>exp(−yTk Y yk/2)
,

where I is the indicator function. Hence, by Birkhoff’s Ergodic Theorem [39], the following equality holds almost

surely

lim
N→∞

1

N

N−1∑
k=0

γk
a.s.
= EIζ0>exp(−yT0 Y y0/2) = γ,

Now consider the probability of event E0,l occurring, we have

P (γ0 = · · · = γl−1 = 0) = E
l−1∏
i=0

P (γi = 0|y0, . . . , yl−1)

= E exp

(
−1

2

l∑
i=1

yTi Y yi

)

=
1√

det(I + ΠlYl)
,

where Πl is the covariance of [yT0 , . . . , y
T
l−1]T and Yl = diag(Y, . . . , Y ) ∈ Rml×ml. Thus, the probability that l

sequential packet drops is non-zero. By Ergodic Theorem, almost surely the following equality holds

lim
N→∞

1

N

N−1∑
k=0

IEk,l
a.s.
= (det(I + ΠlYl))

−1/2 > 0,

which implies that Ek,l happens infinitely often. Similarly one can prove that Ek,l happens infinitely often.

(c). Let us define

Uk = gkR+Y −1(Σ0).

Clearly, P−0 = U0 = Σ0. Assume that P−k ≤ Uk, then

P−k+1 = gR+(1−γk)Y −1(P−k ) ≤ gR+Y −1(P−k ) ≤ gR+Y −1(Uk) = Uk+1,

where we use the fact that gW is monotonically increasing for all W and gR+(1−γk)Y −1(X) ≤ gR+Y −1(X) for all

X . Hence, by induction, P−k ≤ Uk for all k. Now, by Proposition 1, Uk converges to Xol and hence there exists

M , such that for all k,

P−k ≤ Uk ≤M.

Since Uk converges to Xol, for any ε, there exists an N , such that for all k ≥ N ,

P−k ≤ Uk ≤ Xol + εI.

The other inequality can be proved similarly.

For any ε, let l > 0 satisfies the following inequality

glR+Y −1(0) ≥ Xol − εI.
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Since the left-hand side converges to Xol when l →∞, we could always find such an l. As a result, suppose the

event Ek,l happens, then

P−k+l = glR+Y −1(P−k ) ≥ glR+Y −1(0) ≥ Xol − εI.

By Theorem 3.b, P−k ≥ Xol − εI happens infinitely often. The other inequality can be proved similarly.

(d). The proof of the upper bound is trivial by Theorem 3.c. To derive the lower bound, let us define

Sk , P−1k , S−k ,
(
P−k
)−1

.

By inverting both sides of (15) and applying the matrix inversion lemma on the righthand side,

Sk = S−k + (1− γk)CT (R+ Y −1)−1C + γkC
TR−1C. (48)

Therefore, when k → +∞, we have

lim
k→+∞

E[Sk] = lim
k→+∞

E[S−k ] + CTR−11 C.

On the other hand,

S−k+1 = (AS−1k AT +Q)−1

= Q−1 −Q−1A(Sk +ATQ−1A)−1ATQ−1.

Since the function h(X) = X−1 is a convex function for X > 0 (see proof in [40]), S−k+1 is concave with respect

to Sk. By Jensen’s inequality, the following inequality holds:

lim
k→+∞

E[S−k+1] ≤ lim
k→+∞

(A(E[Sk])−1AT +Q)−1.

Hence

lim
k→+∞

E[S−k+1] ≤ lim
k→+∞

ΓR1
(E[S−k ]). (49)

Based on the monotonicity of ΓR1(X),

lim
k→+∞

E[S−k ] ≤ lim
k→+∞

ΓR1
(E[S−k−1]) ≤ · · · ≤ lim

k→+∞
ΓkR1

(Σ−10 ).

Therefore,

lim
k→+∞

E[P−k ] = lim
k→+∞

E[(S−k )−1]

≥ lim
k→+∞

(E[S−k ])−1 ≥ lim
k→+∞

(ΓkR1
(Σ−10 ))−1,

where the first inequality is true because Jensen’s inequality holds for the convex function h(X) = X−1, X > 0.

By Proposition 1, as k →∞, ΓkR1
(X) converges to X−1ol , which implies that

lim
k→∞

E[P−k ] ≥ Xol.
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Proof of Theorem 4: (a). Similar to the proof of Theorem 3.a, we have

Pr(γk = 1|Ik−1) = 1− 1√
det(I + (CP−k C

T +R)Z)
. (50)

Substitute Xcl and X0 into (50) to obtain γ and γ.

The proofs of (b) and (c) are similar to the open-loop case and are omitted.

Proof of Lemma 2: Note that in (28)

det(Im + ΠY ) = det(Im + UTUY ) = det(Im + UY UT ),

where U is upper triangular with positive diagonal entries obtained by Cholesky decomposition. The second equality

is by Sylvester’s determinant theorem. To prove the inequalities, it is equivalent to show that

1 + tr(UY UT ) < det(Im + UY UT ) < exp((tr(UY UT ))). (51)

For the first inequality,

det(Im + UY UT ) =

m∏
i=1

(1 + λi)

= 1 + tr(UY UT ) +
∑
i 6=j

λiλj · · ·+
m∏
i=1

λi

> 1 + tr(UY UT ),

where λi’s are the positive eigenvalues of UY UT and the first equality is due to the fact that the eigenvalues of

Im+UY UT are 1+λi, i = 1 . . .m. Since UY UT > 0, the inequality is strict. Now we prove the second inequality

in (51):

det(Im + UY UT )=

m∏
i=1

expln(1+λi)

= exp

(
m∑
i=1

ln(1 + λi)

)
< exp(tr(UY UT )),

where the inequality is due to ln(1 + λi) < λi.
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