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On the Performance Degradation of Cyber-Physical
Systems under Stealthy Integrity Attacks

Yilin Mo∗, Bruno Sinopoli†

Abstract—This paper analyzes the effect of stealthy integrity attacks on
Cyber-Physical Systems, which is modeled as a Stochastic Linear Time-
Invariant (LTI) system equipped with a linear filter, a linear feedback
controller and a χ2 failure detector. An attacker wishes to induce
perturbation in the control loop by compromising a subset of the sensors
and injecting an exogenous control input, without incurring detection
from an anomaly detector. We show how the problem can be modeled,
from the attacker’s standpoint, as a constrained control problem and
that the characterization of the maximum perturbation can be posed as
reachable set computation, which we solve using ellipsoidal calculus.

I. INTRODUCTION

Cyber-Physical Systems (CPS) refer to the embedding of
widespread sensing, networking, computation and control into phys-
ical spaces with the goal of making them safer, more efficient and
reliable. Driven by the miniaturization and integration of sensing,
communication and computation in cost effective devices, CPSs are
bound to transform many industries such as aerospace, transportation,
built environments, energy, health-care, and manufacturing, to name a
few. However, using off-the-shelf networking and computing devices
provides several opportunities for malicious entities to inject attacks
on CPS. A wide variety of motivations exists for launching an
attack on the CPSs, ranging from financial reasons, i.e. draw a
financial gain, all the way to terrorism, e.g., threatening the life of
possibly an entire population by controlling electricity and other life-
critical resources. Any successful attack on safety-critical CPSs may
significantly hamper the economy, and even lead to the loss of human
lives. While the threat of attacks on CPS tend to be underplayed at
times, more recently Stuxnet [1] provided a clear sample of the future
to come. The research community has acknowledged the importance
of addressing the challenge of designing secure CPS [2].

Classical system theory based approaches, such as robust statis-
tic [3] and robust control [4], seek to design algorithms which can
withstand certain types of failures. In addition to robust method,
Fault Detection and Isolation (FDI) have been extensively studied
over the past decades [5]. The main drawback of such an approach
is that the failures are usually assumed to be benign, independent
or random, while an attack could be carefully designed to exploit
certain vulnerabilities of the system. Therefore, the applicability of
robust and FDI techniques needs to be carefully reexamined when
dealing with CPS security.

In the context of dynamical systems, Pasqualetti et al. [6], [7],
Sundaram et al. [8] and Fawzi et al. [9] show how to detect and
identify malicious behaviors in consensus networks, power grids,
wireless control networks and control systems. However, in the
majority of these contributions, the system model is assumed to
be noiseless, which greatly favors the failure detector, since the
evolution of the system is deterministic and any deviation from the
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predetermined trajectory will be detected. As a consequence, in all
the above papers, the attacker can either arbitrarily perturb the system
along certain directions or cannot induce any perturbation, without
incurring detection. We believe that a more realistic scenario needs
to account for a noisy environment. In this case it is harder to detect
malicious behavior since the adversary may inject an attack which
inflicts a large perturbation on the system state, while only causing
a slightly increasing in the detection rate.

In this paper we focus on developing tools to quantify the maxi-
mum perturbation that an attacker can introduce into a control system
via a stealthy integrity attack on a subset of the sensors and through
the injection of exogenous control inputs. The system is modeled
as a Stochastic Linear Time-Invariant (LTI) system equipped with a
linear filter, a linear feedback controller and a χ2 failure detector.
We formulate the attacker’s action as a constrained control problem
and quantify the resilience of the CPS against such attacks using
the concept of invariant and reachable set. We further provide a
recursive algorithm to compute the inner and outer approximation
of the reachable set of the attacker, thus providing a computational
method to quantify the maximum perturbation inflicted by a stealthy
attack. This article generalizes the preliminary results in [10], [11],
where we consider attacks on the sensors only.

The rest of the paper is organized as follows: In Section II, we
describe the physical system model and the cyber system model (the
estimator, controller and failure detector) of the CPS. In Section III,
we introduce the stealthy integrity attack model and formulate the
attacker’s strategy as a constrained control problem. In Section IV,
we design an ellipsoidal approximation algorithm to compute the
reachable region of the system under stealthy integrity attacks. In
Section V, we provide a numerical example to illustrate the effect of
stealthy integrity attacks on CPS. Finally, Section VI concludes the
paper.

Notations: Sn+ is the set of n × n positive semidefinite matrices.
We write X ≥ Y if X − Y ∈ Sn+. X+ is the Moore-Penrose
pseudoinverse of the matrix X . ‖ · ‖ denotes the 2-norm of a vector.

II. SYSTEM DESCRIPTION

We model the system as a linear control system, which is equipped
with a linear filter, a linear feedback controller and a χ2 failure
detector. We assume that the physical system follows:

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where x(k) ∈ Rn is the vector of state variables at time k, u(k) ∈ Rp
is the control input, w(k) ∈ Rn is the process noise at time k and
x(0) is the initial state. w(k), x(0) are independent Gaussian random
variables, and x(0) ∼ N (0, Σ), w(k) ∼ N (0, Q).

A sensor network is deployed to monitor the system described in
(1). At each step all the sensor readings are collected and sent to a
centralized estimator. The observation equation can be written as

y(k) = Cx(k) + v(k), (2)

where y(k) = [y1(k), . . . , ym(k)]T ∈ Rm is a vector of sensor
measurements, and yi(k) is the measurement made by sensor i at
time k. v(k) ∼ N (0, R) is i.i.d. measurement noise independent of
x(0) and w(k).

A linear filter is used to compute state estimation x̂(k) from
observations y(k):

x̂(k + 1) = Ax̂(k) +Bu(k)+

K {y(k + 1)− C [Ax̂(k) +Bu(k)]} .
(3)

Define the residue z(k) and the estimation error e(k) at time k as

z(k) , y(k)− C(Ax̂(k) +Bu(k)), e(k) , x(k)− x̂(k). (4)



2

We assume that an LTI feedback controller is used to stabilize the
system, which takes the following form:

u(k) = Lx̂(k) (5)

It is well known that the closed-loop system is stable if and only
if both A −KCA and A + BL are stable [12]. For the rest of the
discussion we only focus on systems that are closed-loop stable and
in steady state.

Consider the CPS consisting of the physical system, the linear filter
and controller. We can immediately identify x(k) as the “physical”
state and x̂(k) as the “cyber” state. Thus, we define the state of the
system x̃(k) as:

x̃(k) ,

[
x(k)
e(k)

]
=

[
In 0
In −In

] [
x(k)
x̂(k)

]
∈ R2n (6)

A. χ2 Failure Detector

Failure detectors are often used to detect anomalous operations.
We assume that a χ2 failure detector ([13],[14]) is deployed, which
computes the following quantity

g(k) = z(k)TP−1
z z(k), (7)

where Pz is the covariance matrix of the residue z(k) is a constant
matrix since we assume the system is in steady state. Define P

− 1
2

z

to be a symmetric matrix such that P
− 1

2
z × P−

1
2

z = P−1
z . Thus, (7)

can be rewritten as g(k) = ‖P−
1
2

z z(k)‖2.
Since z(k) is Gaussian distributed [13], g(k) is χ2 distributed with

m degrees of freedom. The χ2 failure detector compares g(k) with
a threshold η and triggers ad alarm if g(k) is greater than η. Let us
define the probability of triggering an alarm at time k as

β(k) , P (g(k) ≥ η). (8)

When the system is operating normally, β(k) is a constant, which
is defined as the false alarm rate α. In common practice, α is small
since false alarms tend to increase operation cost.

III. THREAT MODEL

In this section we describe the integrity attack model on the CPS.
We assume that an adversary has the following capabilities:

1) The adversary knows the static parameters of the system,
namely A, B, C, K, L, Q, R matrices.

2) The adversary compromises a subset {i1, . . . , il} ⊆
{1, . . . ,m} of sensors. The adversary can add arbitrary bias
to the readings of the compromised sensors. Define the sensor
selection matrix Γ as

Γ , [ei1 , . . . , eil ] ∈ Rm×l, (9)

where ei is the ith vector of the canonical basis of Rm. Further
define the bias injected by the attacker ya(k) ∈ Rl as

ya(k) , [yai1(k), . . . , yail(k)]T ,

where yai (k) indicates the injected bias on sensor i at time k.
Thus, the modified reading received by the estimator can be
written as

y(k) = Cx(k) + Γya(k) + v(k), (10)

3) The adversary can inject external control inputs to the system.
As a result, the system equation becomes

x(k + 1) = Ax(k) +Bu(k) +Baua(k) + w(k), (11)

where Ba ∈ Rn×q characterizes the direction of control inputs
the attacker can inject to the system.

4) Without loss of generality, we assume that the injection of
control inputs starts at time 0 and the manipulation of sensor
measurements starts at time 1. In other words, ua(k) = 0, for
all k ≤ −1, and ya(k) = 0, for all k ≤ 0.

To simplify notations, let us define the following matrices:

Ã ,

[
A+BL −BL

0 A−KCA

]
∈ R2n×2n, (12)

B̃ ,

[
Ba 0

Ba −KCBa −KΓ

]
∈ R2n×(q+l), (13)

C̃ , P
− 1

2
z

[
0 CA

]
∈ Rm×2n, (14)

D̃ , P
− 1

2
z

[
CBa Γ

]
∈ Rm×(q+l). (15)

and the attacker’s input ζ(k) at time k as ζ(k) ,

[
ua(k)

ya(k + 1)

]
.

Since the system is linear, the cyber-physical state x̃(k) can be
seen as the sum of two signals: x̃n(k), the state generated by noise
and x̃c(k), the state generated by the attacker’s action. Similarly, the
residue vector z(k) can be seen as the sum of zc(k) and zn(k). One
can verify that

x̃c(k + 1) = Ãx̃c(k) + B̃ζ(k), (16)

P
− 1

2
z zc(k + 1) = C̃x̃c(k) + D̃ζ(k), (17)

x̃n(k + 1) = Ãx̃n(k) +

[
I 0

I −KC −K

] [
w(k)

v(k + 1)

]
.

P
− 1

2
z zn(k + 1) = C̃x̃n(k) + P

− 1
2

z

[
C Im

] [ w(k)
v(k + 1)

]
.

We further define the attacker’s action ζ∞ , (ζ(0), ζ(1), . . . ) as
an infinite sequence1 of ζ(k)s. It is clear that x̃c(k) and zc(k)
are functions of ζ∞. Thus, we can write them as x̃c(k, ζ∞) and
zc(k, ζ∞) respectively. For simplicity, we will omit ζ∞ when there
is no confusion.

Our goal is to characterize the evolution of the state x̃(k) during the
integrity attack. It is easy to verify that x̃n(k) is a stationary Gaussian
process, which has the same statistics as x̃(k) in the absence of the
attacker. Consequently we focus on x̃c(k), i.e., the state generated
by the attacker’s action.

It is clear that without any constraint on the attacker’s action,
the reachable region of x̃c(k) is the reachable subspace of (Ã, B̃).
However, if the adversary does not design its input ζ(k) cautiously,
an alarm may be triggered and the attack may be stopped by the
system operator before the attacker achieves its goal. As a result, we
restrict our attention to “stealthy” attacks.

In this paper, we assume that attacker constrains its action ζ∞ to
satisfy the following inequality:

‖P−
1
2

z zc(k + 1)‖ = ‖C̃x̃c(k) + D̃ζ(k)‖ ≤ δ.∀k = 0, 1, . . . (18)

where δ is a design parameter of the attacker. Since z(k) = zc(k) +
zn(k) and zn(k) has the same distribution as z(k) in the absence of
the attack, the adversary can make z(k) very similar to the “nominal”
z(k) by enforcing that zc(k) is small. In other words, the failure
detector can hardly distinguish a system that is under attack from a
“healthy” system. Such an observation is formalized by the following
theorem:

Theorem 1. For any δ ∈ (0,
√
η), if (18) holds for all k, then

β(k) ≤ (Γ(m/2))−1 Γ(m/2, (
√
η − δ)2/2)), (19)

1If the attack stops at time T , then ζ(k) = 0 for all k > T .
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where Γ(s, x) ,
∫∞
x
ts−1e−tdt is the upper incomplete gamma

function and Γ(s) , Γ(s, 0) is the gamma function. Furthermore,

lim
δ→0+

(Γ(m/2))−1 Γ(m/2, (
√
η − δ)2/2)) = α. (20)

Proof. By triangle inequality, we know that

g(k) = ‖P−1/2
z zn(k) + P−1/2

z zc(k)‖2

≤
(
‖P−1/2

z zn(k)‖+ ‖P−1/2
z zc(k)‖

)2
Hence, g(k) ≤ η when ‖P−1/2

z zn(k)‖ ≤ √η − δ, which implies
that

β(k) ≤ P
(
‖P−1/2

z zn(k)‖2 ≤ (
√
η − δ)2

)
. (21)

By the properties of χ2 distribution [15], the RHS of (21) equals the
RHS of (19). Furthermore, Γ(s, x) is continuous with respect to x
by its definition, hence (20) holds.

As a consequence of (18), we can model the attacker’s strategy as
a constrained control problem, where the system equation is given
by:

x̃c(k + 1) = Ãx̃c(k) + B̃ζ(k), (22)

and the constraint is as follows:

‖C̃x̃c(k) + D̃ζ(k)‖ ≤ δ, ∀k = 0, 1, . . . (23)

Our goal is to compute the reachable region of the state x̃c(k),
which indicates the resilience of the system against integrity attacks.
Due to the linearity of the system, we assume, without loss of
generality, that δ = 1 for the rest of the paper, leading to the following
definitions:

Definition 1. The attacker’s action ζ∞ is called feasible if (18) holds
for all k and δ = 1.

Definition 2. The reachable region Rk of x̃c(k) is defined as2

Rk , {x̃c ∈ R2n : x̃c = x̃c(k, ζ∞), for some feasible ζ∞}. (24)

The union of all Rk is defined as:

R ,
∞⋃
k=0

Rk. (25)

Thus, R indicates all possible biases that an attacker can inflict
into the system.

Remark 1. For a noiseless system model considered in [6], [7], [8],
[9], the adversary has to enforce that (18) holds for δ = 0 to avoid
being detected, as even a small deviation from the nominal behavior
of the system will result in an alarm. However, as is illustrated in
Section V, it is entirely possible that the attacker, although cannot
inject anything when enforcing δ = 0, can inflict a large perturbation
into the system with a small δ, which is hardly detectable in a noisy
system. In [6], [7], [8], [9], such an attack with a non-zero δ would
be considered as a failed attack for the deterministic settings. In this
paper, R is used to quantify the performance degradation of a noisy
system under the attack.

IV. MAIN RESULTS

In this section, we consider the problem of computing the reachable
set Rk and R. In Section IV-A, we provide a recursive definition of
Rk based on the concept of controlled invariant set. We further devote
Section IV-B to the numerical approximation of Rk and R.

2Notice that the definition of Rk is different from the definition in [10].

A. Recursive Definition of Rk
Before continuing on, we need to introduce the concept of reach

set and one-step set:

Definition 3. Define the reach set Rch(S) of set S ⊆ R2n to be

Rch(S) , {x̃+ ∈ R2n : ∃ζ ∈ Rp+l, x̃c ∈ S,
s.t., Ãx̃c + B̃ζ = x̃+, ‖C̃x̃c + D̃ζ‖ ≤ 1}. (26)

Definition 4. Define the one-step set Pre(S) of set S ⊆ R2n to be

Pre(S) , {x̃c ∈ R2n : ∃ζ ∈ Rp+l,
s.t., Ãx̃c + B̃ζ ∈ S, ‖C̃x̃c + D̃ζ‖ ≤ 1}. (27)

Remark 2. The reach set of S indicates all the states x̃c(k+1) that
can be reached with a one-step admissible attacker’s input ζ(k), when
the current state x̃c(k) is in S. On the other hand, the one-step set
of S indicates all the previous states x̃c(k − 1) that can be driven
into S with a one-step admissible ζ(k − 1).

At the first glance, it seems that Rk can be recursively defined
as Rk+1 = Rch(Rk). However, the reach set only guarantees that
‖C̃x̃c(k) + D̃ζ̃(k)‖ ≤ 1 for the current k, not for the future ks. To
define Rk recursively, we need to introduce the concept of controlled
invariant set.

Definition 5. A set C ⊆ R2n is called controlled invariant if for all
x̃c ∈ C, there exists a ζ, such that the following inequalities hold:

Ãx̃c + B̃ζ ∈ C, ‖C̃x̃c + D̃ζ‖ ≤ 1. (28)

In other words, if the current state x̃c(k) belongs to C, then the
attacker can always use a admissible ζ(k) to enforce that the next
state x̃c(k+1) and hence all the future states to be in C. The following
proposition characterizes several important properties of the reach set,
the one-step set and the controlled invariant set:

Proposition 1. The following statements hold for the operator
Pre, Rch and the controlled invariant set:

1) Pre and Rch are monotonically nondecreasing, i.e., if S1 ⊆
S2, then

Pre(S1) ⊆ Pre(S2), Rch(S1) ⊆ Rch(S2). (29)

2) Let C to be a controlled invariant set, then C ⊆ Pre(C).
3) There exists the maximum controlled invariant set C∞, such

that C ⊆ C∞ for all controlled invariant set C.
4) Let C0 = R2n and Ck+1 = Pre(Ck). Then the following

equality holds:

C∞ =

∞⋂
k=0

Ck. (30)

Proof. The proof of the first three properties can be found in [16],
while the proof of the last property is quite technical and is reported
in the appendix to improve legibility3.

Remark 3. Notice that Proposition 4 in [17] cannot be used to prove
the last statement of Proposition 1, since it requires compactness,
which may not hold in our case.

We are now ready to provide a recursive definition of Rk:

Theorem 2. R is controlled invariant, and hence R ⊆ C∞.
Furthermore Rk satisfies the following recursive equation

Rk+1 = Rch(Rk)
⋂
C∞, with R0 = {0}. (31)

3It is worth noticing that for general systems and feasibility constraints,
(30) is not necessarily true[17].
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Proof. First we need to prove that R is controlled invariant. By
definition, for any x̃c ∈ R, there exists k and a feasible ζ∞, such that
x̃c = x̃c(k, ζ∞). As a result, ζ(k) is the admissible control input to
ensure that (28) holds, which implies that R is controlled invariant.
Thus, R ⊆ C∞ due to the maximality of C∞.

We now prove (31) by induction. Since the attack starts at time 0,
R0 = {0}. Now assume that (31) holds for k. From the definition
of Rk+1, and the fact that Rk+1 ⊆ R ⊆ C∞, it is trivial to prove
that Rk+1 ⊆ Rch(Rk)

⋂
C∞. Therefore, we only need to prove the

opposite side of the set inclusion, i.e., for all x̃c ∈ Rch(Rk)
⋂
C∞,

there exists a feasible ζ∞ that drives state x̃c(k + 1, ζ∞) at time
k + 1 to x̃c. We construct such ζ∞ in three steps:

1) By the fact that x̃c ∈ Rch(Rk), we know that there exists an
x̃c(k) ∈ Rk and ζ(k), such that

x̃c = Ãx̃c(k) + B̃ζ(k), ‖C̃x̃c(k) + D̃ζ(k)‖ ≤ 1.

2) Since x̃c(k) ∈ Rk, by the induction assumption, we know that
there exist ζ(0), . . . , ζ(k − 1) and x̃c(0) = 0, . . . , x̃c(k − 1),
such that for all t = 0, . . . , k − 1.

x̃c(t+ 1) = Ãx̃c(t) + B̃ζ(t), ‖C̃x̃c(t) + D̃ζ(t)‖ ≤ 1.

3) Since x̃c ∈ C∞, one can find an admissible control ζ(k + 1),
such that (28) holds. Now since x̃c(k+2) = Ãx̃c+ B̃ζ(k+1)
also belongs to C∞, we can repeat the procedure above to find
ζ(k + 2), ζ(k + 3), . . . , to ensure (28) holds for all k.

Therefore, ζ∞ = (ζ(0), . . . , ζ(k), . . . ) is the required feasible
sequence, which concludes the proof.

Proposition 1 and Theorem 2 enable the computation of Ck and
Rk by recursively applying the operator Pre and Rch. However,
computing the exact shapes of these sets is numerically intractable
as k goes to infinity. One standard technique to attack this problem
is to compute the inner and outer approximation of Ck and Rk,
using ellipsoids or polytopes. In this paper, we use an ellipsoidal
approximation procedure similar to the one proposed in [18]. The
detailed approach is presented in the next subsection.

B. Ellipsoidal Approximation of Rk
This section is devoted to constructing an ellipsoidal inner and

outer approximation of Ck and Rk. To this end, let us assume that
Ck and Rk are approximated by the following ellipsoids:

E2n(Cin(k)) ⊆ Ck ⊆ E2n(Cout(k)),

E2n(Rin(k)) ⊆ Rk ⊆ E2n(Rout(k)),
(32)

where Cin(k), Cout(k), Rin(k), Rout(k) ∈ S2n
+ , and E2n(S) is

defined as the following 2n dimensional ellipsoid

E2n(S) , {x̃c ∈ R2n : (x̃c)TSx̃c ≤ 1}. (33)

To compute Ck andRk, we focus on the ellipsoidal inner and outer
approximations of set intersection and the operators Pre and Rch,
which are provided by the following proposition and theorem:

Proposition 2. Let S1, S2 ∈ R2n be positive semidefinite, then the
following set inclusions hold:

E2n(S1 + S2) ⊆ E2n(S1)
⋂
E2n(S2) ⊆ E2n(S1/2 + S2/2). (34)

Theorem 3. Let S ∈ R2n×2n be a positive semidefinite matrix. Then
the following set inclusions hold:

E2n(Sinp ) ⊆ Pre(E2n(S)) ⊆ E2n(Soutp ), (35)

E2n(Sinr ) ⊆ Rch(E2n(S)) ⊆ E2n(Soutr ), (36)

where

Sinp = f(S), Soutp = f(S)/2, (37)

Sinp = h(S), Soutp = h(S)/2, (38)

and f(S), h(S) are defined as the following Riccati equations:

f(S) , ÃTSÃ+ C̃T C̃

− (ÃTSB̃ + C̃T D̃)(B̃TSB̃ + D̃T D̃)+(B̃TSÃ+ D̃T C̃),

h(S) , ÂTSÂ+ ĈT Ĉ

− (ÂTSB̂ + ĈT D̂)(B̂TSB̂ + D̂T D̂)+(B̂TSÂ+ D̂T Ĉ).

The matrices Â ∈ R2n×2n, B̂ ∈ R2n×(q+l+2n), Ĉ ∈
Rm×2n, D̂ ∈ Rm×(q+l+2n) are defined as

Â , Ã+, B̂ ,
[
−Ã+B̃, I2n − Ã+Ã

]
,

Ĉ , C̃Ã+, D̂ ,
[
D̃ − C̃Ã+B̃, C̃ − C̃Ã+Ã

]
. (39)

Proof of Theorem 3. We first prove (37). Consider the augmented set
Sa ⊆ R2n+q+l of both the state x̃c and attacker’s action ζ:

Sa =

{[
x̃c

ζ

]
: Ãx̃c + B̃ζ ∈ E2n(S), ‖C̃x̃c + D̃ζ‖ ≤ 1

}
.

It is easy to see that Ãx̃c+B̃ζ ∈ E2n(S) is equivalent to the following
inequality: [

x̃c

ζ

]T [
ÃTSÃ ÃTSB̃

B̃TSÃ B̃TSB̃

] [
x̃c

ζ

]
≤ 1.

Moreover, ‖C̃x̃c + D̃ζ‖ ≤ 1 is equivalent to[
x̃c

ζ

]T [
C̃T C̃ C̃T D̃

D̃T C̃ D̃T D̃

] [
x̃c

ζ

]
≤ 1.

Therefore, the augmented set Sa is the intersection of the following
two 2n+ q + l dimension ellipsoids:

Sa = E2n+q+l
([

ÃTSÃ ÃTSB̃

B̃TSÃ B̃TSB̃

])
⋂
E2n+q+l

([
C̃T C̃ C̃T D̃

D̃T C̃ D̃T D̃

])
.

(40)

Thus, by Proposition 2,

E2n+q+l(Sina ) ⊆ Sa ⊆ E2n+q+l(Souta ),

where

Sina =

[
ÃTSÃ ÃTSB̃

B̃TSÃ B̃TSB̃

]
+

[
C̃T C̃ C̃T D̃

D̃T C̃ D̃T D̃

]
,

Souta = Sina /2.

Using the Schur complement, we can project the two high dimen-
sional ellipsoids from R2n+q+l back to R2n to obtain (37).

We now prove (38). From the definition of Rch, for any x̃c ∈
Rch(E2n(S)), there exist x̃− ∈ E2n(S) and ζ, such that

x̃c = Ãx̃− + B̃ζ, (41)

‖C̃x̃− + D̃ζ‖ ≤ 1. (42)

By the properties of the pseudoinverse, we know that I2n − Ã+Ã
is a projection from R2n onto the kernel of A. Thus, (41) can be
written as

x̃− = Ã+x̃c − Ã+B̃ζ + (I2n − Ã+Ã)x̃0,

where x̃0 ∈ R2n is an arbitrary vector. Since x̃− ∈ E2n(S), we know
that

Ã+x̃c − Ã+B̃ζ + (I2n − Ã+Ã)x̃0 ∈ E2n(S). (43)
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Furthermore, (42) can be written as∥∥∥C̃Ã+x̃c + (D̃ − C̃Ã+B̃)ζ + (C̃ − C̃Ã+Ã)x̃0

∥∥∥ ≤ 1. (44)

By the same argument as the proof of Theorem 3, we can obtain
(38).

The monotonicity of the f and h function is proved in the following
theorem:

Theorem 4. For any X ≥ Y ≥ 0, f(X) ≥ f(Y ), h(X) ≥ h(Y ).

Proof. Let

Xa =

[
ÃTXÃ ÃTXB̃

B̃TXÃ B̃TXB̃

]
+

[
C̃T C̃ C̃T D̃

D̃T C̃ D̃T D̃

]
,

Ya =

[
ÃTY Ã ÃTY B̃

B̃TY Ã B̃TY B̃

]
+

[
C̃T C̃ C̃T D̃

D̃T C̃ D̃T D̃

]
.

Clearly Xa ≥ Ya, which implies that E2n+q+l(Xa) ⊆ E2n+q+l(Ya).
Define a projection matrix M as

M ,
[
I2n 02n×(q+l)

]
∈ R2n×(2n+q+l).

which implies that f(X) ≥ f(Y ). Similarly, one can prove that
h(X) ≥ h(Y ).

We are now ready to describe a recursive algorithm to compute
the ellipsoidal approximations Cin(k), Cout(k), Rin(k), Rout(k).
By Theorem 3, we know that Cin(k), Cout(k) can be evaluated
recursively as

Cin(k + 1) = f(Cin(k)), Cout(k + 1) = f(Cout(k))/2. (45)

Since Cin(1) ≥ Cout(1) ≥ Cin(0) = Cout(0) = 0, it is easy to
prove by induction that {Cin(k)} and {Cout(k)} are monotonically
increasing and hence the limits for both sequences exist. Let us denote
the limits as Cin∞ and Cout∞ respectively. Hence, Rin(k) and Rout(k)
can be computed recursively as

Rin(k + 1) = h(Rin(k)) + Cin∞ ,

Rout(k + 1) =
[
h(Rout(k))/2 + Cout∞

]
/2.

(46)

Remark 4. It is worth noticing that other than the ellipsoidal
approximation techniques [18], algorithms such as polyhedral ap-
proximation [19] can also be adopted to compute R.

V. NUMERICAL EXAMPLES

Consider the following LTI system:

x(k + 1) =

[
1 0
1 1

]
x(k) + w(k) +

[
1
0

]
u(k). (47)

Suppose two sensors are measuring the first state x1(k) and the
second state x2(k) respectively. Hence

y(k) = x(k) + v(k). (48)

The estimation and control gain matrices are

K =

[
0.594 0.079
0.079 0.694

]
, L =

[
−1.244 −0.422

]
(49)

We consider two cases, where either the first sensor or the second
sensor is compromised, i.e. Γ = [1, 0]T or Γ = [0, 1]T . We assume
that Ba = 0 for both cases.

Figure 1 shows the inner and outer approximation of R when the
first sensor is compromised. SinceR is in R4, we project the ellipsoid
to the space of the state xc(k) and the space of estimation error ec(k)
respectively. From the simulation we can conclude that the reachable
region R is bounded. Therefore the attacker cannot destabilize the
system by compromising the first sensor.

Figure 2 shows the inner approximation of Rk when the second
sensor is compromised. It can be seen that Rk is growing over time.
In fact, by Theorem 2 in [11], Rk must be unbounded. It is worth
noticing that by linearity, the reachable set is unbounded for any
δ > 0. However, if the system is noiseless, then the adversary need
to enforce δ = 0 to avoid detection, which by (18) enforces that
ζk = 0 for all k. Therefore, no stealthy attack can be launched.
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Fig. 1. Inner and Outer Approximation of R When Γ = [1, 0]T .
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Fig. 2. Inner Approximation of R1 to R7 When Γ = [0, 1]T .

VI. CONCLUSION

In this paper, we quantify the performance degradation of Cyber-
Physical Systems under the effect of stealthy integrity attacks. The
CPS is modeled as a stochastic LTI system equipped with a linear
filter and feedback controller and χ2 failure detector. An adversary
wishes to induce perturbation in the control loop by compromising
a subset of the sensors and injecting an exogenous control input,
while remaining stealthy. We show how the attacker’s strategy can
be formulated as a constrained control problem and that the charac-
terization of the maximum perturbation can be posed as reachable
set computation, which can be solved by ellipsoidal approximation
methods.
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APPENDIX A
PROOF OF PROPOSITION 1

This section is devoted to the proof of the last statement in
Proposition 1, which requires several intermediate results:

Proposition 3. Let S ⊆ Rn be a closed, convex and symmetric set.
Then S can be decomposed as

S = K+ V.

where V is a subspace of Rm and K is a compact, convex and
symmetric set, which is orthogonal to V .

Proof. The proposition can be proved using Corollary 2.1 in [20].

Proposition 4. The following statements are true:
1) Let K ⊂ Rn be a compact (closed and bounded) set and S0 ⊆

Rn be a closed set. Then S = K+ S0 is a closed set.
2) Let K ⊂ Rn be a compact set and f be a continuous function,

then f(K) is also compact.

Proof. The proof can be found in [21].

Lemma 1. Let S ∈ Rn be a closed, convex and symmetric set, then

Pre(S) = {x̃c ∈ R2n : ∃ζ, s.t. Ãx̃c + B̃ζ ∈ S, ‖C̃x̃c + D̃ζ‖ ≤ 1}.

is also closed, convex and symmetric.

Proof. One can verify that Pre(S) is convex and symmetric. Hence,
we only need to prove that Pre(S) is closed. To this end, define:

Sa ,

{[
x̃c

ζ

]
∈ R2n+q+l : Ãx̃c + B̃ζ ∈ S, ‖C̃x̃c + D̃ζ‖ ≤ 1

}
.

Since Ãx̃c + B̃ζ and C̃x̃c + D̃ζ are continuous with respect to x̃c

and ζ, Sa is also closed, convex and symmetric. By Proposition 3,
we know that Sa = Ka + Va, where Ka is compact and Va is a
subspace. Now define a projection matrix M :

M ,
[
I2n 02n×(q+l)

]
∈ R2n×(2n+q+l).

Thus, Pre(S) = MSa = MKa +MVa. By Proposition 4, MKa is
compact. Furthermore, MVa is a subspace of Rn and thus closed.
Hence, by Proposition 4, Pre(S) = MKa +MVa is closed.

We are now ready to prove Proposition 1:

Proof. Since C∞ is controlled invariant, C∞ ⊆ Pre(C∞). On the
other hand, one can verify that C1 = Pre(R2n) ⊆ C0.

Thus, by the monotonicity of Pre, we know that

C∞ ⊆ · · · ⊆ C1 ⊆ C0. (50)

Hence, we only need to prove that
⋂∞
i=0 Ci ⊆ C∞. Let x̃c ∈

⋂∞
i=0 Ci.

From definition, there exist ζi, i ∈ N, such that

Ãx̃c + B̃ζi ∈ Ci−1, ‖C̃x̃c + D̃ζi‖ ≤ 1.

Such ζis may not be unique. As a result, we will choose those ζis
with minimum norm. By Lemma 1 and 3, we know that Ci can be
written as Ci = Ki +Vi, where Ki is compact and Vi is a subspace.
Now by (50),

V0 ⊇ V1 ⊇ V2 ⊇ . . .

Let us define subspace

V ,
∞⋂
i=0

Vi.

Since Vi is of finite dimension, there must exists an N , such that
Vi = V for all i ≥ N , which further implies that Ki ⊇ Ki+1, i ≥ N .
Hence, Ki is uniformly bounded.

Now we want to prove that ‖ζi‖ is bounded. Consider the opposite.
By Bolzano-Weierstrass Theorem, there exists a subsequence {ζij},
such that

lim
j→∞

‖ζij‖ =∞, lim
j→∞

ζij/‖ζij‖ = v.

Hence

B̃
ζij
‖ζij‖

∈ Vi+
1

‖ζij‖
(Ki−Ãx̃c),

∥∥∥∥D̃ ζij
‖ζij‖

∥∥∥∥ ≤ 1

‖ζij‖
(1+‖C̃x̃c‖),

which implies that B̃v ∈ V, D̃v = 0. Therefore, for any α ∈ R,

Ãx̃c + B̃(ζi + αv) ∈ Ci−1, ‖C̃x̃c + D̃(ζi + αv)‖ ≤ 1.

As a result, the fact that ‖ζi‖ is unbounded contradicts with the
minimality of ‖ζi‖. Thus, ‖ζi‖ must be bounded. Now by Bolzano-
Weierstrass Theorem, there exists a subsequence {ζij}, such that

lim
j→∞

ζij = ζ.

It is easy to see that ‖C̃x̃c + D̃ζ‖ ≤ 1. On the other hand, for any
j > i, Ãx̃c + B̃ζj ∈ Cj−1 ⊆ Ci. Since Ci is closed, we know that

Ãx̃c + B̃ζ ∈
∞⋂
i=0

Ci.

Thus,
⋂∞
i=0 Ci is controlled invariant. Since C∞ is the largest con-

trolled invariant set,
⋂∞
i=0 Ci ⊆ C∞, which concludes the proof.


