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False Data Injection Attacks in Control Systems

Yilin Mo, Bruno Sinopoli∗†

Abstract

This paper analyzes the effects of false data injec-
tion attacks on Control System. We assume that the
system, equipped with a Kalman filter and LQG con-
troller, is used to monitor and control a discrete linear
time invariant Gaussian system. We further assume that
the system is equipped with a failure detector. An at-
tacker wishes to destabilize the system by compromising
a subset of sensors and sending corrupted readings to
the state estimator. In order to inject fake sensor mea-
surements without being detected the attacker needs to
carefully design its inputs to fool the failure detector,
since abnormal sensor measurements usually trigger an
alarm from the failure detector. We will provide a nec-
essary and sufficient condition under which the attacker
could destabilize the system while successfully bypass-
ing the failure detector. A design method for the de-
fender to improve the resilience of the CPS against such
kind of false data injection attacks is also provided.

1. Introduction

Cyber Physical Systems (CPS) refer to the embed-
ding of widespread sensing, computation, communi-
cation and control into physical spaces [1]. Applica-
tion areas are as diverse as aerospace, chemical pro-
cesses, civil infrastructure, energy, manufacturing and
transportation, most of which are safety-critical. The
availability of cheap communication technologies such
as the internet makes such infrastructures susceptible to
cyber security threats, which may affect national secu-
rity as some of them, such as the power grid, are vital
to the normal operation of our society. Any successful
attack may significantly hamper the economy, the en-
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vironment or may even lead to loss of human life. As
a result, security is of primary importance to guarantee
safe operation of CPS. The research community has ac-
knowledged the importance of addressing the challenge
of designing secure CPS [2] [3].

The impact of attacks on the control systems is
addressed in [4]. The authors consider two possible
classes of attacks on the CPS: Denial of Service (DoS)
attacks and deception attacks (or false data injection at-
tacks). The DoS attack prevents the exchange of infor-
mation, usually either sensor readings or control inputs
between subsystems, while false data injection attack
affects the data integrity of packets by modifying their
payloads. A robust feedback control design against DoS
attacks is further discussed in [5]. We feel that false
data injection attacks can be subtler than DoS attacks
as they are in principle more difficult to detect and have
not been thoroughly investigated. In this paper, we want
to analyze the impact of false data injection attacks on
control systems.

A significant amount of research effort has been
carried out to analyze, detect and handle failures in
control systems. Sinopoli et al. study the impact of
random packet drops on controller and estimator per-
formance [6]. In [7], the author reviews several fail-
ure detection algorithms in dynamic systems. Results
from robust control and estimation [8], a discipline that
aims at designing controllers and estimators that func-
tion properly under uncertain parameters or unknown
disturbances, is also applicable to some control system
failures. However, a large proportion of the literature
assumes that the failure is either random or benign. On
the other hand, a cunning attacker can carefully design
its attack strategy and deceive both detectors and robust
estimators. Hence, the applicability of failure detection
algorithms is questionable in the presence of a smart at-
tacker.

Before describing our problem setup we wiah to
review some of the existing literature concerning se-
cure data aggregation over networks in the presence of
compromised sensors. In [9], the author provides a gen-
eral framework to evaluate how resilient the aggregation
scheme is against compromised sensor data. Liu et al.
study the estimation scheme in power grids and show



that under some assumptions the attacker can modify
the state estimate undetected [10]. However, in both
studies, the authors only consider static systems with es-
timators that rely exclusively upon current sensor mea-
surements. In reality, in a control system the actions
taken by the attacker will not only affect the current
states but also the future ones. An attacker could po-
tentially use this fact to perform its attack over time and
destabilize the system. On the other hand, the dynamics
of the system could be used by the failure detector since
the attack may be detected in the near future even if it
results undetectable when it first occurs.

In this paper, we study the effects of false data in-
jection attacks on control systems. We assume that the
control system, which is equipped with a Kalman fil-
ter, LQG controller and failure detector, is monitoring
and controlling a linear time-invariant system. The at-
tacker’s goal is to destabilize the system by compromis-
ing a subset of sensors and sending altered readings to
the state estimator. The attacker also wants to guaran-
tee that its action can bypass the failure detector. Under
these assumptions, we will give a necessary and suffi-
cient condition under which the attacker could destabi-
lize the system without being detected.

The rest of the paper is organized as follows: In
Section 2 we formulate the problem by revisiting and
adapting Kalman filter, LQG controller and failure de-
tector to our scenario. In Section 3, we define the threat
model of false data injection attacks. In Section 4 we
prove a necessary and sufficient condition under which
the attacker could destabilize the system. We will also
give some design criteria to improve the resilience of
the CPS against false data injection attacks. A numeri-
cal example is provided in Section 5 to illustrate the ef-
fects of false data injection attacks on the CPS. Finally
Section 6 concludes the paper.

2. Problem Formulation

In this section we model the CPS as a linear control
system, which is equipped with a Kalman filter, LQG
controller and failure detector.

2.1. Physical System

We assume that the physical system has Linear
Time Invariant (LTI) dynamics, which take the follow-
ing form:

xk+1 = Axk+Buk+wk, (1)

wherexk ∈ ℝ
n is the vector of state variables at time

k, uk ∈ ℝ
p is the control input,wk ∈ ℝ

n is the process
noise at timek andx0 is the initial state.wk, x0 are inde-
pendent Gaussian random variables, andx0 ∼N (0, Σ),

wk ∼ N (0, Q).

2.2. Kalman filter

A sensor network is deployed to monitor the sys-
tem described in (1). At each step all the sensor read-
ings are collected and sent to a centralized estimator.
The observation equation can be written as

yk =Cxk+ vk, (2)

whereyk = [yk,1, . . . ,yk,m]
T ∈ ℝ

m is a vector of mea-
surements from the sensors, andyk,i is the measurement
made by sensori at timek. vk ∼ N (0, R) is the mea-
surement noise independent ofx0 andwk.

A Kalman filter is used to compute state estimation
x̂k from observationsyks:

x̂0∣−1 = 0, P0∣−1 = Σ, (3)

x̂k+1∣k = Ax̂k+Buk, Pk+1∣k = APkA
T +Q,

Kk = Pk∣k−1C
T(CPk∣k−1C

T +R)−1,

x̂k = x̂k∣k−1+Kk(yk−Cx̂k∣k−1), (4)

Pk = Pk∣k−1−KkCPk∣k−1.

Although the Kalman filter uses a time varying gainKk,
it is well known that this gain will converge if the sys-
tem is detectable. In practice the Kalman gain usually
converges in a few steps. We can safely assume the
Kalman filter to be already in steady state. Let us define

P≜ lim
k→∞

Pk∣k−1, K ≜ PCT(CPCT +R)−1. (5)

The update equations of Kalman filter are as follows:

x̂k+1 = Ax̂k+Buk+K [yk+1−C(Ax̂k+Buk)] , (6)

For future analysis, let us define the residuezk+1 at time
k+1 to be

zk+1 ≜ yk+1−C(Ax̂k+Buk). (7)

(6) can be simplified as

x̂k+1 = Ax̂k+Buk+Kzk+1. (8)

The estimation errorek at timek is defined as

ek ≜ xk− x̂k. (9)

Manipulating (6), (7), we get the following recursive
equation:

ek+1 = (A−KCA)ek+(I −KC)wk−Kvk. (10)



2.3. LQG Controller

An LQG controller is used to stabilize the system
by minimizing the following objective function1:

J = lim
T→∞

min
u0,...,uT

E
1
T

[

T−1

∑
k=0

(xT
k Wxk+uT

k Uuk)

]

, (11)

whereW,U are positive semidefinite matrices anduk is
measurable with respect toy0, . . . ,yk, i.e. uk is a func-
tion of previous observations. It is well known that the
optimal controller of the above minimization problem is
a fixed gain controller, which takes the following form:

uk =−(BTSB+U)−1BTSAx̂k, (12)

whereuk is the optimal control input andSsatisfies the
following Riccati equation

S= ATSA+W−ATSB(BTSB+U)−1BTSA. (13)

Let us defineL ≜ −(BTSB+U)−1BTSA, then uk =
Lxk∣k.

The systems is stable if and only ifCov(ek) andJ
are both bounded. In particular that implies both matri-
cesA−KCA andA+BL are stable. In the rest of the
paper, we will only consider stable systems. Further,
we assume to be already in steady state, which means
{xk, yk, x̂k}are stationary random processes.

2.4. Failure Detector

A failure detector is often used in control system.
For example, aχ2 failure detector computes the follow-
ing quantity

gk = zT
k P

−1zk, (14)

whereP is the covariance matrix of the residuezk.
Sincezk is Gaussian distributed,gk is χ2 distributed
with mdegrees of freedom. As a result,gk cannot be far
away from 0. Theχ2 failure detector will comparegk

with a certain threshold. Ifgk is greater than the thresh-
old, then an alarm will be triggered.

Other types of failure detectors have also been con-
sidered by many researchers. In [11] [12], the authors
design a linear filter other than the Kalman filter to de-
tect sensor shift or shift in matricesA andB. The gain
of such filter is chosen to make the residue of the fil-
ter more sensitive to certain shift, which helps to detect
a particular failure. Willsky et al. A generalized likeli-
hood ratio test to detect dynamics or sensor jump is also
proposed by Willsky et al. in [13].

1We assume an infinite horizon LQG controller is implemented.

To make the discussion more general, we assume
the detector implemented in the CPS triggers an alarm
based on following event:

gk > threshold, (15)

wheregk is defined as

gk ≜ g(zk, yk, x̂k, . . . ,zk−T +1, yk−T +1, x̂k−T +1). (16)

The functiong is continuous andT ∈ ℕ is the window
size of the detector. It is easy to see forχ2 detector,gk =
zT
k P−1zk. We further define the probability of alarm for

the failure detector to be

βk = P(gk > threshold). (17)

At a first glance, it seems that certain choice of
g function will affect detection differently. However,
since theχ2 detector along with many other detectors
performs detection by computing a certain function of
x̂k, yk, zk, then none of these detectors will be able to
distinguish the healthy system from the partial compro-
mised system if, under the malicious attack, the vectors
x̂k, yk, zk have the same statistical properties as those of
healthy system. In Section 4, we show how the attacker
can systematically attack the system without being no-
ticed by the failure detector if a particular algebraic con-
dition holds.

3. False Data Injection Attacks

In this section, we assume that a malicious third
party wants to compromise the integrity of the system
described in Section 2. The attacker is assumed to have
the following capabilities:

1. It knows the system model: We assume that the
attacker knows matricesA, B,C, Q, Ras described
in Section 2 and the observation gain and control
gainK, L.

2. It can control the readings of a subset of the sen-
sors, denoted bySbad. As a result, (2) now be-
comes

y′k =Cx′k+ vk+Γya
k, (18)

whereΓ = diag(γ1, . . . ,γm) is the sensor selection
matrix. γi is a binary variable andγi = 1 if and
only if i ∈ Sbad. ya

k is the malicious input from the
attacker. Here we write the observations and states
asy′k andx′k since they are in general different from
those of the healthy system due to the malicious
attack.

3. The intrusion begins at time 0. As a result, the ini-
tial conditions for the partial compromised system
will be x̂′−1 = 0, Ex0 = 0.



Figure 1 shows the diagram of the partial compro-
mised system.

Plant SensorActuator

Attacker

z−1

Controller

Detector

Estimator
x̂′k

u′k−1

Λya
k y′k

u′k

Figure 1. System Diagram

Definition 1. An attack sequenceY is defined as
an infinite sequence which takes the following form
ya

0, ya
1, . . ..

It is easy to see that all the states of the partially
compromised system are a function ofY . For exam-
ple, x′k can be written asx′k(Y ). However, in order to
simplify the notation, we will usex′k when there is no
confusion. Under the previous assumptions, the new
system dynamics can be written as

x′k+1 = Ax′k+Bu′k+wk,

y′k =Cx′k+ vk+Γya
k,

x̂′k+1 = Ax̂′k+Bu′k+K
[

y′k+1−C(Ax̂′k+Bu′k)
]

,

u′k = Lx̂′k.

(19)

We can also define the new residue and estimation error
respectively as

z′k+1 ≜ y′k+1−C(Ax̂′k+Bu′k), e′k ≜ x′k− x̂′k. (20)

Finally, the new probability of alarm is defined as

β ′
k = P(g′k > threshold), (21)

where

g′k ≜ g(z′k, y′k, x̂′k, . . . ,z
′
k−T +1, y′k−T +1, x̂′k−T +1). (22)

The differences between the two systems are defined as

∆xk ≜ x′k− xk,∆x̂k ≜ x̂′k− x̂k,

∆uk ≜ u′k−uk,∆yk ≜ y′k− yk,

∆zk ≜ z′k− zk,∆ek ≜ e′k−ek,∆βk = β ′
k−βk, (23)

wherexk, x̂k, yk, uk, βk are given by equations (1), (2),
(6), (12), (17).∆xk, ∆x̂k, ∆uk, ∆yk, ∆zk, ∆ek, ∆βk repre-
sent the differences between the partially compromised
system and the healthy system.

The following definition defines what constitutes a
“successful” attack.

Definition 2. An attack sequenceY is (ε,α)-
successful if there exists T∈ ℕ, such that the following
holds:

∥∆xT(Y )∥ ≥ α, ∆βk(Y )≤ ε, ∀k= 0,1, . . . ,T −1.

The system is called(ε,α)-attackable if there exists a
(ε,α)-successful attack sequenceY on the CPS.

Remark 1. It is worth noticing that simply injecting a
large ya

k will result in a large∆zk which, in turn, will
induce the failure detector to trigger an alarm immedi-
ately.

Although the definition of(ε,α)-attackable is sim-
ple, it is not so easy to verify whether a system is(ε,α)-
attackable, especially when the form ofg is complex.
As a result, we will consider a limit case of(ε,α)-
attackability.

Definition 3. A control system is perfectly attackable if
there exists an attack sequenceY such that the follow-
ing holds:

limsup
k→∞

∥∆xk(Y )∥= ∞, ∥∆zk(Y )∥ ≤ 1, ∀k= 0,1, . . . , .

The next theorem shows that perfect attackability
implies(ε,α)-attackability.

Theorem 1. If a control system is perfectly attackable,
then it is also(ε,α)-attackable for anyε,α > 0,

Proof. Since the system is perfectly attackable, there
exists an attack sequenceY , such that

limsup
k→∞

∥∆xk(Y )∥= ∞, ∥∆zk(Y )∥ ≤ 1,k= 0, 1, . . .

(24)
Manipulating equations (6) (12) (19), we can prove that:

∆x̂k+1 = (A+BL)∆x̂k+K∆zk+1,

∆yk+1 = ∆zk+1+C(A+BL)∆x̂k.
(25)

Stability of A+BL is guaranteed by the stability of the
original system. Therefore, if∥∆zk(Y )∥ ≤ 1 for all
k=0,1, . . ., then∆x̂k(Y ) and∆yk(Y )will be uniformly
bounded for allk. Define the bounds to be

M1 = sup
k
∥∆x̂k(Y )∥, M2 = sup

k
∥∆yk(Y )∥, (26)

whereM1, M2 < ∞ are constants. Due to the continuity
of g, there existsε ′ > 0 such that if∥∆zk∥≤ ε ′, ∥∆x̂k∥≤
ε ′, ∥∆yk∥ ≤ ε ′, then

∣P(g′k > threshold)−P(gk > threshold)∣ ≤ ε,



Since ∆zk(Y ), ∆x̂k(Y ), ∆yk(Y ) are uniformly
bounded, by linearity, we can findδ > 0, such that

∥∆zk(δY )∥≤ ε ′, ∥∆x̂k(δY )∥≤ ε ′, ∥∆yk(δY )∥≤ ε ′,∀k.

By the stationarity of the random process{xk, yk, x̂k},
we know that

∣P(g′k > threshold)−P(gk > threshold)∣ ≤ ε, ∀k.

Finally by linearity,

limsup
k→∞

∆xk(δY ) = δ limsup
k→∞

∆xk(Y ) = ∞.

Hence,δY is an(ε,α)-successful attack sequence and
the system is(ε,α)-attackable.

In the next section, we will give a necessary and
sufficient condition for a system to be perfectly attack-
able.

4. Main Result

In this section, we will provide an algebraic con-
dition to identify perfectly attackable system, which is
given by the following theorem:

Theorem 2. The control system (1) is perfectly attack-
able if and only if A has an unstable eigenvalue and the
corresponding eigenvector v satisfies:

1. Cv∈ span(Γ), where span(Γ) is the column space
of Γ.

2. v is a reachable state of the dynamic system
∆ek+1 = (A−KCA)∆ek−KΓya

k+1.

Before proving the theorem, we need the following
lemmas:

Lemma 1. The CPS is perfectly attackable if and only
if there exists an attack sequenceY such that

limsup
k→∞

∥∆ek∥= ∞, ∥∆zk∥ ≤ 1, k=−1,0, . . . (27)

Proof. The proof follows from the boundedness of∆x̂k

and the fact that∆xk = ∆x̂k+∆ek. Due to space limita-
tion the complete proof will be omitted.

Using Lemma 1, we can use∆ek to prove that the
system is perfectly attackable. The main advantages of
substituting∆xk with ∆ek is that∆ek follows a simpler
recursive equation:

∆ek+1 = (A−KCA)∆ek−KΓya
k+1. (28)

Moreover,

∆zk+1 =CA∆ek+Γya
k+1. (29)

Before proving Theorem 2, we need an additional
lemma:

Lemma 2. Let p∈ℝ
n be a vector, andlimk→∞ Akp ∕= 0,

then there exists an unstable eigenvector v of matrix A,
such that p∈ span(p, A2p, . . . ,An−1p).

The proof is based on the Jordan decomposition of
the A matrix and on Carley-Hamilton Theorem. The
complete proof is omitted due to space limits. Now we
are ready to prove Theorem 2.

Proof of Theorem 2.First we will prove the necessity.
Suppose that CPS is perfectly attackable, then by
Lemma 1, there exists an successful attack sequenceY

such that

limsup
k→∞

∥∆ek∥= ∞, ∥∆zk∥ ≤ 1, k= 0,1, . . . .

A peak subsequence{∆eik} from ∆ei is defined as

∆ei0 = ∆e0, ∆eik = min{ j : ∥∆ej∥> ∥∆eik−1∥}, (30)

which means that the norm∥∆eik∥ is larger than the
norm of any preceding term in the original sequence.
Since∆ek is unbounded, there always exists such a sub-
sequence and limk→∞ ∆eik = ∞. Now consider the nor-
malized vectors defined as

pk ≜
1

∥∆ek∥
∆ek. (31)

It is trivial to see∥pk∥ is bounded. As a result, there
exists an index set{ jk} ⊂ {ik} such that all of the sub-
sequences{p jk}, {p jk−1}, . . . ,{p jk−n+1} converge ask
goes to infinity, due to Bolzano-Weierstrass theorem.
Let us define

ql ≜ lim
k→∞

p jk−l , l = 0, 1, . . . , n−1. (32)

In addition, since

∥∆ek+1∥= ∥A∆ek−K∆zk+1∥ ≤ ∥A∥∥∆ek∥+ ∥K∥,

and∆ejk is unbounded, limk→∞ ∆ejk−l =∞ for all l from
0 ton−1. As a result

lim
k→∞

∆ejk

∥∆ejk−1∥
= lim

k→∞

A∆ejk−1−K∆zjk

∥∆ejk−1∥

= A lim
k→∞

∆ejk−1

∥∆ejk−1∥
= Aq1.

Therefore

q0 = lim
k→∞

∥∆ejk−1∥

∥∆ejk∥
lim
k→∞

∆ejk

∥∆ejk−1∥
= Aq1/∥Aq1∥.

Similarly, it is easy to show thatql =
Aql+1/∥Aql+1∥. Hence,

span(q0, . . . ,qn−1)= span(An−1qn−1, . . . ,Aqn−1, qn−1).



By definition of {∆eik}, ∥∆ejk∥ ≥ ∥∆ejk−1∥. Thus,
∥Aq1∥ ≥ ∥q1∥, which implies that limk→∞ Akqn−1 ∕= 0.
From Lemma 2 it follows that there exists an unstable
eigenvectorv in the span ofq0, . . . ,qn−1. Since

∥
∆zjk+1

∥∆ejk∥
∥= ∥Cpjk +Γ

ya
jk+1

∥∆ejk∥
∥ ≤

1
∥∆ejk∥

,

Cpjk ∈ span(Γ)+B(0,(∥∆ejk∥)
−1),

whereB(0,(∥∆ejk∥)
−1) is a ball center at 0 with radius

(∥∆ejk∥)
−1. As a result

Cq0 ∈
∞
∩

l=1

[

span(Γ)+B(0,(∥∆ejk∥)
−1)

]

= span(Γ).

Similarly,CAql belongs tospan(Γ) for all l from 0
to n−1. As a result,CAv∈ span(CAq0, . . . ,CAqn−1)⊂
span(Γ), which impliesCv∈ span(Γ).

For reachability, since∆ek is reachable,α∆ek is
reachable for anyα ∈ ℝ. In particular,pk is reachable
for all k. Since the reachable subspace is closed, the
limit ql is reachable, which impliesv is reachable, thus
proving the necessary condition.

We now want to prove sufficiency. SinceCv ∈
span(Γ), there existsy∗ such thatΓy∗ = Cv. Fur-
thermore, sincev is reachable, there existya

0, . . . ,y
a
n−1,

where n is the dimension of state space, such that
∆en−1 = v. Define

M = max
k=0,...,n−1

∥∆zk∥. (33)

By linearity, if the attacker injectsya
0/M, . . . ,ya

n−1/M,
then∆en−1 = v/M and∥∆zk∥ ≤ 1 for k = 0, . . . ,n−1.
As a result, the attacker could choose the attack se-
quence to be

ya
n+i = ya

i −
λ i+1

M
y∗, i = 0,1, . . . (34)

One can prove that with the above attack sequence, the
following equality and inequality hold :

∆en+i = ∆ei +
λ i+1

M
v, i = 0,1, . . . , (35)

∥∆zn+i∥= ∥∆zi∥ ≤ 1, i = 0,1, . . . (36)

Since∣λ ∣ ≥ 1, ∆ek → ∞, which implies that the system
is perfectly attackable.

Remark 2. The attacker could use the results of The-
orem 2 to design an attack sequenceY based on the
eigendecomposition of A and theΓ matrix.

On the other hand, the defender could also perform
an eigendecomposition on A matrix, find all the unsta-
ble eigenvector v and then compute Cv. For each Cv,

the non-zero elements will indicate the sensors needed
by the attacker to perform a successful attack along di-
rection v. Therefore if Cv is a sparse vector, an attacker
could initiate an attack on the direction of v by com-
promising only a few sensors. As a result, the defender
could increase the resilience of the system by installing
redundant sensors to measure mode v.

5. Illustrative Examples

In this section, we will provide a numerical exam-
ple to illustrate the effects of false data injection attacks.

Consider a vehicle moving along thex-axis. The
state space includes positionx and velocity ˙x of the ve-
hicle. An actuator is used to control the speed of the
vehicle. As a result, the system dynamics is as follows:

ẋk+1 = ẋk+uk+wk,1,

xk+1 = xk+(ẋk+1+ ẋk)/2+wk,2

= xk+ ẋk+uk/2+wk,1/2+wk,2,

(37)

which can be written in the matrix form as

Xk+1 =

[

1 0
1 1

]

Xk+

[

1
0.5

]

uk+wk, (38)

where

Xk =

[

ẋ
x

]

, wk =

[

wk,1

wk,2+0.5wk,1

]

. (39)

Suppose two sensors are measuring the velocity and po-
sition respectively. Hence

yk = Xk+ vk. (40)

We assume the position sensor is compromised, i.e.Γ=
diag(0,1). We further impose the following parameters
on the system

Q= R=W = I2,U = 1.

The steady state Kalman gain and the LQG control
gain under the previous assumptions are respectively

K =

[

0.5939 0.0793
0.0793 0.6944

]

,L=
[

−1.0285 −0.4345
]

.

Since[01]′ is an unstable eigenvector and is in the
span ofΓ and reachable, by Theorem 2, the system is
perfectly attackable. Using the result we derived in Sec-
tion 4, we design the attack sequenceY to be

ya
0 = [0,−1.000]′ , ya

1 = [0,−0.367]′ ,

ya
k = ya

k−2− [0,−0.485]′ , k≥ 2.
(41)

Figure 2 shows the evolution of the∆Xk and∆zk.
It is easy to see that∥∆zk∥ is always less than 1 and
∆xk goes to infinity, showing that the system is perfectly
attackable.
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Figure 2. Evolution of ∆ẋk, ∆xk, ∥∆zk∥

6. Conclusion and Future Work

This paper proposes a false data injection attack
model and analyze the effects of such kind of attacks
on a linear time-invariant Gaussian control system. We
prove the existence of a necessary and sufficient condi-
tion under which the attack could destabilize the system
while successfully bypassing a large set of possible fail-
ure detectors. We also provide a design criterion to im-
prove the resilience of the system to false data injection
attacks.

Future work will be directed toward deriving con-
ditions under which the system is(ε,α)-attackable. We
also plan to combine both the false data injection at-
tacks and DoS attacks and study their effects on control
systems.

References

[1] E. A. Lee, “Cyber physical systems: De-
sign challenges,” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep.
UCB/EECS-2008-8, Jan 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-
2008-8.html

[2] E. Byres and J. Lowe, “The myths and facts behind cy-
ber security risks for industrial control systems,” inPro-
ceedings of the VDE Kongress. VDE Congress, 2004.

[3] A. A. Cárdenas, S. Amin, and S. Sastry, “Research chal-
lenges for the security of control systems,” inHOT-
SEC’08: Proceedings of the 3rd conference on Hot top-
ics in security. Berkeley, CA, USA: USENIX Associ-
ation, 2008, pp. 1–6.

[4] ——, “Secure control: Towards survivable cyber-
physical systems,” inDistributed Computing Systems
Workshops, 2008. ICDCS ’08. 28th International Con-
ference on, June 2008, pp. 495–500.

[5] S. Amin, A. Cardenas, and S. S. Sastry, “Safe and
secure networked control systems under denial-of-
service attacks.” inHybrid Systems: Computation and
Control. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, April 2009, pp. 31–45. [Online].
Available: http://chess.eecs.berkeley.edu/pubs/597.html

[6] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla,
and S. Sastry, “Foundations of control and estimation
over lossy networks,”Proceedings of the IEEE, vol. 95,
no. 1, pp. 163–187, Jan. 2007.

[7] A. Willsky, “A survey of design methods for failure de-
tection in dynamic systems,”Automatica, vol. 12, pp.
601–611, Nov 1976.

[8] R. Stengel and L. Ryan, “Stochastic robustness of lin-
ear time-invariant control systems,”Automatic Control,
IEEE Transactions on, vol. 36, no. 1, pp. 82–87, Jan
1991.

[9] D. Wagner, “Resilient aggreagion in sensor networks,”
in ACM Workshop on Security of Ad Hoc and Sensor
Networks, Oct 25 2004.

[10] Y. Liu, P. Ning, and M. Reiter, “False data injection at-
tacks against state estimation in electric power grids,” in
Proceedings of the 16th ACM Conference on Computer
and Communications Security, November 2009.

[11] R. V. Beard, “Failure accommodation in linear sys-
tems through self-reorganization,” Man Vehicle Laboro-
tory, Cambrideg, Massachusetts, Tech. Rep. MVT-71-1,
February 1971.

[12] H. L. Jones, “Failure detection in linear systems,” Ph.D.
dissertation, M.I.T., Cambridge, Massachusetts, 1973.

[13] A. S. Willsky and H. L. Jones, “A generalized likeli-
hood ratio approach to the detection and estimation of
jumps in linear systems,”IEEE Transactions on Auto-
matic Control, vol. 21, pp. 108–112, Feburary 1976.

View publication statsView publication stats

https://www.researchgate.net/publication/228859026

