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Let X be a strictly positive definite matrix of proper dimension. Define the
X-norm of a vector v to be

lvl|x = VoT Xv.
The following lemma is needed to prove Theorem 2.

Lemma 1. Given any matriz A, there exists a positive semidefinite X matrix
(depending on A), such that if ||Ap||x > ||pllx, then limy_ o AFp # 0.

Proof. Let us decompose A as
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where A; is strictly stable and A, contains all the unstable and critically stable
eigenvalues. Define
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Since A is stable, there exists an positive semidefinite X,

X > ATXA.
Now suppose that
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As a result,

1Ap|% = || Ap|l% = pT AT X Ap < p" Xp = |p||%.



Thus, if ||Apllx > |lpllx, we can conclude that p, cannot be zero. For any
k,
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Hence,
lim A¥p # 0.
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The proof of Theorem 2 will remain mostly the same, except the norm
need to be changed into X-norm. Notice that by the equivalence of norms,
limsup;_, o, ||Ae(k)|| = oo implies that lim sup,,_, . [|Ae(k)||x = oo.



