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Abstract

In this paper we consider the problem of infinite-horizon sensor scheduling for

estimation in linear Gaussian systems. Due to possible channel capacity, energy

budget or topological constraints, it is assumed that at each time step only a

subset of the available sensors can be selected to send their observations to the

fusion center, where the state of the system is estimated by means of a Kalman

filter. Several important properties of the infinite-horizon schedules will be

presented in this paper. In particular, we prove that the infinite-horizon average

estimation error and the boundedness of a schedule are independent of the initial

covariance matrix. We further provide a constructive proof that any feasible

schedule with finite average estimation error can be arbitrarily approximated by

a bounded periodic schedule. We later generalized our result to lossy networks.

These theoretical results provide valuable insights and guidelines for the design

of computationally efficient sensor scheduling policies.
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1. Introduction

Sensor networks span a wide spectrum of applications, e.g., environment

and habitat monitoring, health care, home and office automation, and traffic

control [1]. In many of these applications, a centralized fusion center is imple-

mented to collect and process the measurements for estimation purposes. Sensor

nodes are typically battery powered, and therefore energy constrained. Further-

more, their radios are low-power and may be subject to interference and fading.

As a result of the bandwidth and energy constraints, it is not advisable, and

sometimes infeasible, for all the sensors to communicate with the fusion center

within each sampling period. Thus, it is of significant interest to determine

sensor scheduling policies able to tradeoff energy/bandwidth consumption and

estimation quality.

Sensor network energy consumption minimization and lifetime maximization

problems have been active areas of research in recent years. Sensor networks

energy management is typically carried out via efficient MAC protocols [2] or

via efficient scheduling of sensor states [3, 4]. Xue and Ganz [5] showed that the

lifetime of sensor networks is influenced by transmission schemes, network den-

sity and transceiver parameters with different constraints on network mobility,

position awareness and maximum transmission ranges. Chamam and Pierre [6]

proposed a sensor scheduling scheme capable of optimally putting sensors in

active or inactive modes. Shi et al. [7] considered sensor energy minimization as

a mean to maximize the network lifetime while guaranteeing a desired quality

of the estimation accuracy. The same authors further proposed a sensor tree

scheduling algorithm [8] which leads to longer network lifetimes.

Performance optimization for sensor networks under given energy constraints,

which can be seen as the dual problem of network energy minimization, has also

been studied by several researchers. Such constrained optimization problem has

been studied for continuous-time linear systems by Miller and Runggaldier [9]

and Mehra [10]. Krishnamurthy [11] derived the optimal sensor scheduling for

the estimation of a Hidden Markov Model based system. For discrete-time linear
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systems, approaches using dynamic programming [12], greedy algorithms [13],

convex optimization [14, 15, 16] and branch and bound [17] have been proposed

to find the optimal or suboptimal sensor scheduling over finite time horizons.

In general, the sensor scheduling problem is a combinatorial optimization prob-

lem [18] and thus the exact optimal solution over long time horizons is compu-

tationally intractable. However, the exact optimal schedule can be computed in

some very particular cases. For instance, Shi and Zhang [19] and Hovareshti et

al.[20] prove that under certain conditions, the optimal infinite-horizon schedule

is periodic for a system with two smart sensors.

Power control has also been studied [21, 22] to increase the energy efficiency

of sensors. To this end, a sensor could use a lower power level to communicate

information, which results in either a lower SNR, an increase in communication

delay or a larger packet drop probability. Conceptually, for sensors with finitely

many power levels, a virtual sensor could be assigned to each power level. Hence,

the usage of power control can be seen as a special case of sensor scheduling.

In most of the works cited above, the optimal schedule can only be computed

for linear systems over a finite-horizon, while only for specific systems an infinite-

horizon policy can be derived. Moreover, for general systems, the solution is

usually given as the result of an optimization problem and thus implicit. In

this paper, we consider the problem of sensor scheduling for state estimation of

linear LTI systems with Gaussian noise over an infinite-horizon. In particular we

focus on proving several fundamental properties that can be used as guideline

for the analysis and design of infinite-horizon sensor schedules. In particular,

we prove the following two propositions concerning scheduling policies:

1. The average estimation error of a schedule is independent of the initial

covariance of x0.

2. Any schedule that has a bounded average estimation error can be ar-

bitrarily approximated (both in terms of average estimation error and

communication rate) by bounded periodic schedules.

These results have important practical consequences as bounded periodic sched-
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ules are easier to compute than general ones.

The rest of the paper is organized as follows: in Section 2, we formulate

the infinite-horizon sensor scheduling problem. In Section 3, we prove that

the average estimation covariance is independent of the initial conditions. We

further provide a constructive proof that any feasible schedule can be arbitrarily

approximated by bounded periodic schedules in Section 4. We then generalize

our results to lossy networks in Section 5. A numerical example is presented in

Section 6 to illustrate the performance of periodic schedules. Finally, Section 7

concludes the paper.

Notations

We summarize the notations used in this paper in Table 1.

S Set of sensors
S Collection of all eligible subsets of S
Ik Subset of sensors selected at time k
σ An infinite sensor schedule in the form of (I1, I2, . . . )
Σ The covariance of the initial state x0
Q The covariance of process noise
R The covariance of measurement noise

J(σ,Σ) The average trace of the error covariance matrix
ri(σ) The average communication rate of sensor i

Table 1: Notations

2. Problem Formulation

Consider the following discrete-time LTI system

xk+1 = Axk + wk, (1)

where xk ∈ Rn represents the state and wk ∈ Rn the process noise. It is assumed

that wk and x0 are independent Gaussian random vectors, x0 ∼ N (0, Σ) and

wk ∼ N (0, Q), where Σ, Q > 02. A wireless sensor network composed of m

2All the comparisons between matrices are in the sense of positive semidefinite.
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sensing devices S = {s1, . . . , sm} and one fusion center is used to monitor the

state of system (1). The measurement equation is

yk = Cxk + vk, (2)

where yk = [yk,1, yk,2, . . . , yk,m]′ ∈ Rm is the measurement vector3. Each ele-

ment yk,i represents the measurement of sensor i at time k, C = [C ′1, . . . , C
′
m]
′

is the observation matrix and the matrix pair (C, A) is assumed observable,

vk ∼ N (0, R) is the measurement noise, assumed to be independent of x0 and

wk.

Suppose that due to energy, bandwidth or topological constraints, only a

subset of sensors can be chosen to send their measurements to the fusion center.

Denote the collection of all eligible subsets as S ⊆ P(S), where P(S) denotes

the power set of S, i.e., the collection of all subsets of S.

For any I = {si1 , . . . , sil} ∈ S, we define the selection matrix Γ(I)

Γ(I) , [ei1 , . . . , eil ]
′
,

where ei is the ith vector of the canonical basis, i.e. a vector with entries 0

everywhere, except a 1 at the ith entry. By means of this selection matrix we

can define the matrices

C(I) , Γ(I)C, R(I) , Γ(I)RΓ(I)′,

that allows one to define the matrix-valued function g(X, I) as

g(X, I) ,
[
(AXA′ +Q)−1 + C(I)′R(I)−1C(I)

]−1
.

A schedule is defined as an infinite sequence of σ , (I1, I2, . . .) satisfying

the constraint Ik ∈ S. Clearly, if a schedule σ is used, the covariance of the

Kalman filter satisfies the following equation:

Pk = g(Pk−1, Ik), P0 = Σ. (3)

3The ′ on a matrix always means transpose.

5



Remark 1. In case of quantized measurements, You et al. [23] and Msechu
et al. [24] propose a Quantized Kalman Filtering (QKF) algorithm, where the
approximated Pk follows a modified Riccati equation similar to (3). As a result,
all the results discussed in this paper can be generalized to QKF.

Since Pk is a function of both the sensor schedule σ and the initial condition

Σ, we will denote Pk as Pk(σ,Σ). Let us define the cost function J(σ,Σ) as

J(σ,Σ) , lim sup
N→∞

1

N

N∑
k=1

tr(Pk(σ,Σ)).

J(σ,Σ) can be seen as the average estimation error. Moreover, let us define the

average communication rate of sensor i as

ri(σ) , lim sup
N→∞

1

N

N∑
k=1

Isi∈Ik ,

where I is the indicator function.

Remark 2. Our formulation can address a large class of sensor selection prob-
lems. In particular, the set S can be used to characterize the topological and
communication constraints of the network, while variables ri define the average
usage of the sensors, which can be used to define energy constraints on sensors.

We have the following definitions:

Definition 1. A schedule σ is called feasible if for all initial condition Σ,
J(σ,Σ) <∞.

Definition 2. A schedule σ is called bounded if for all initial condition Σ > 0,
there exists a matrix M(Σ), such that Pk(σ,Σ) ≤M(Σ) for all k4.

Definition 3. A schedule σ is called periodic if there exists T > 0, such that
Ik+T = Ik for all k.

In the next section, we will prove that the cost function J does not depend

on the initial condition Σ. In Section 4, we will prove that we can arbitrarily

approximate a feasible schedule by means of bounded periodic schedules.

4Note that while boundedness clearly implies feasibility, the converse is not always true.
It is enough to consider the sequence of Pk is {1, 0, 2, 0, 0, 3, 0, 0, 0, 4, , ...} to see that while Pk

is unbounded, the average cost J(σ,Σ) would be bounded and in particular equals to 1.
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3. Independence of the Initial Condition

This section is devoted to prove the following Theorem:

Theorem 1. If there exists Σ0 > 0 such that J(σ,Σ0) <∞, then for all Σ > 0,
we have

J(σ,Σ) = J(σ,Σ0) <∞.

Furthermore, if Pk(σ,Σ0) ≤ M is bounded for all k, then the schedule σ is
bounded.

Remark 3. The main consequence of Theorem 1 is that the cost is independent
from the initial conditions but only depends on the scheduling, i.e. J(σ,Σ) =
J(σ) and that to check the feasibility [boundedness] of a schedule σ it is enough
to check if J(σ,Σ) [Pk(σ,Σ)] is bounded for one initial condition Σ > 0 instead
of all initial conditions.

To prove Theorem 1, a few intermediate results have to be derived. To this end,

let us first define the functions:

h(X,Y ) , X + Y, (4)

where X,Y ∈ Rn×n are positive semidefinite and

f(X,Y ) , (X−1 + Y )−1, (5)

where Y ∈ Rn×n are positive semidefinite and X ∈ Rn×n are strictly positive

definite5. Please note that these functions are linked to the function g as follows

g(X, I) = f(h(A′XA,Q), C(I)′R−1(I)C(I)). (6)

Therefore, to prove the properties of g it is convenient to first study the functions

f and h, whose main properties are summarized in the following Lemma:

Lemma 2. For the functions h(X,Y ) and f(X,Y ) defined in (4) and (5), the
following propositions hold true:

a) f(X,Y ) and h(X,Y ) are monotonically increasing with respect to X, i.e.,
if X1 ≤ X2,

f(X1, Y ) ≤ f(X2, Y ), h(X1, Y ) ≤ h(X2, Y ). (7)

5We require X to be strictly positive definite in order to ensure that f is a well-defined
function.
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b) The following inequalities hold:

f((1 + ρ)X,Y ) ≤ (1 + ρ)f(X,Y ).∀ρ ≥ 0, (8)

h((1 + ρ)X,Y ) ≤ (1 + ρ)h(X,Y ).∀ρ ≥ 0. (9)

c) if Y ≥ αX, then

h((1 + ρ)X,Y ) ≤
(

1 +
ρ

1 + α

)
h(X,Y ).∀ρ ≥ 0. (10)

A partial proof of Lemma 2 was reported in [15]. However, for the sake of

completeness, the whole proof is included in this article.

Proof. a) The monotonicity of h and f can be proved by direct substitution

in (4) and (5).

b) For (8), since X > 0 is strictly positive definite, there exists an invertible

matrix U ∈ Rn×n that can diagonalize X−1 and Y simultaneously, i.e.,

X−1 = U−1(U−1)′, Y = U−1Λ(U−1)′, (11)

where Λ = diag(λ1, . . . , λn) and λi ≥ 0. Hence

f((1 + ρ)X,Y )− (1 + ρ)f(X,Y )

= U ′
{[

(1 + ρ)−1I + Λ
]−1 − (1 + ρ)(I + Λ)−1

}
U

= U ′ diag

(
. . . ,

1 + ρ

1 + (1 + ρ)λi
− 1 + ρ

1 + λi
, . . .

)
U .

For ρ positive the diagonal matrix in the equation above is negative semidefinite

and (8) follows. For (9),

h((1 + ρ)X,Y )− (1 + ρ)h(X,Y ) = ((1 + ρ)X + Y )− (1 + ρ)(X + Y ) = −ρY ≤ 0.

c) It is enough to substitute and obtain

h((1 + ρ)X,Y )−
(

1 +
ρ

1 + α

)
h(X,Y ) =

(1 + ρ)X + Y −
(

1 +
ρ

1 + α

)
(X + Y ) =

ρ(αX − Y )

1 + α
≤ 0,

which concludes the proof.
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The following Lemma illustrates the monotonicity and the “contraction” prop-

erty of the Riccati equation g, which follows directly from Lemma 2 and the

definition of g in terms of f and h given in (6):

Lemma 3. For all ρ ≥ 0 , X > X0 > 0, then the following inequalities hold,

g(X0, I) ≤ g(X, I). (12)

g((1 + ρ))X, I) ≤ (1 + ρ)g(X, I). (13)

Furthermore, if A′XA ≤ αQ, then

g((1 + ρ)X, I) ≤
(

1 +
ρ

1 + α

)
g(X, I). (14)

Finally, the following Lemma provides a useful inequality regarding a positive

semidefinite matrix and its trace.

Lemma 4. Suppose that X ∈ Rn×n is positive semidefinite, then

X ≤ tr(X)In,

where In ∈ Rn×n is the identity matrix.

Proof. Since X is positive semidefinite, all the eigenvalues of X are no greater

than tr(X), which concludes the proof.

We are now ready to prove Theorem 1.

Proof (Theorem 1). Let us choose an arbitrary Σ > 0. First we will prove

that J(σ,Σ) ≤ J(σ,Σ0). To this end, define ρk as6

ρk , inf{ρ ≥ 0 : (1 + ρ)Pk(σ,Σ0) ≥ Pk(σ,Σ)}.

By the definition of Pk,we have that

Pk+1(σ,Σ) = g(Pk(σ,Σ), Ik+1) ≤ g((1 + ρk)Pk(σ,Σ0), Ik+1)

≤ (1 + ρk)g(Pk(σ,Σ0), Ik+1) = (1 + ρk)Pk+1(σ,Σ0).

The second inequality is true due to (13). Therefore, we know that (1 +

ρk)Pk+1(σ,Σ0) ≥ Pk+1(σ,Σ), which implies that ρk+1 ≤ ρk. As a result, ρk

6ρk = 0 if Pk(σ,Σ0) ≥ Pk(σ,Σ).
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is monotonically non-increasing. At this point it remains to prove that ρk → 0.

To this end, let us define α > 0, such that

2J(σ,Σ0)A′A ≤ αQ.

Since we assume that Q > 0, we can always find such an α. Now from the

definition of J(σ,Σ0), the following inequality holds infinitely often (i.e. for an

infinite number of integers k):

tr(Pk(σ,Σ0)) ≤ 2J(σ,Σ0).

By Lemma 4, we know that

A′Pk(σ,Σ0)A ≤ A′ [2J(σ,Σ0)In]A ≤ αQ, (15)

infinitely often. Let ki be a time index when (15) holds. By (14), we have

ρki+1 ≤
1

1 + α
ρki .

Since (15) happens infinitely often and α > 0, it follows that ρk → 0. At this

point, we are ready to prove that J(σ,Σ) ≤ J(σ,Σ0). From the definition of J ,

we know that for all k0 ∈ N, the following equality holds

J(σ,Σ0) = lim sup
N→∞

1

N

N∑
k=1

tr(Pk(σ,Σ0)) = lim sup
N→∞

1

N

N∑
k=k0

tr(Pk(σ,Σ0)).

Since ρk is non-increasing and

tr(Pk(σ,Σ)) ≤ (1 + ρk) tr(Pk(σ,Σ0)),

it follows that J(σ,Σ) ≤ (1 + ρk)J(σ,Σ0) for all ρk. Now by using the fact that

ρk → 0, we prove that

J(σ,Σ) ≤ J(σ,Σ0) <∞.

By using the very same argument, one can also prove that J(σ,Σ0) ≤ J(σ,Σ).

Therefore, for all Σ > 0, we can finally prove that

J(σ,Σ0) = J(σ,Σ).
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For the boundedness of schedule σ, since ρk is non-increasing, it is clear that

Pk(σ,Σ) ≤ (1 + ρk)Pk(σ,Σ0) ≤ (1 + ρ0)M,

which concludes the proof.

4. Approximation of Feasible Schedule by Bounded Periodic Sched-
ules

In this section, we prove that any feasible schedule can be arbitrarily ap-

proximated by bounded periodic schedules. The main result is summarized by

the following theorem:

Theorem 5. For any feasible schedule σ and for any ε, ε1, . . . , εm > 0, there
exists a bounded periodic σp, such that7

J(σp) ≤ J(σ) + ε, (16)

and
ri(σp) ≤ ri(σ) + εi, i = 1, . . . ,m. (17)

The following lemma is needed to prove Theorem 5.

Lemma 6. Let σp be a periodic schedule with period T > 0, i.e.,

Ik+T = Ik, ∀k.

If the following inequality holds for some initial condition Σ > 0

PT (σp,Σ) ≤ Σ, (18)

then the average cost function satisfies the following inequality,

J(σp) ≤
1

T

T∑
k=1

tr(Pk(σp,Σ)). (19)

Moreover, the schedule σp is bounded.

Proof. The main observation behind this proof is that, if the following inequality
holds for any k > 0

Pk+T (σp,Σ) ≤ Pk(σp,Σ), (20)

7For simplicity, we write J(σ,Σ) as J(σ) due to Theorem 1.
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then (19) holds true. Interestingly enough, if we assume that (20) holds at a
certain time k = k0, then it will also hold true at all successive time steps. In
fact:

Pk0+1+T (σp,Σ) = g(Pk0+T (σp,Σ), Ik0+1+T ) ≤ g(Pk0(σp,Σ), Ik0+1+T )

= g(Pk0(σp,Σ), Ik0+1) = Pk0+1(σp,Σ),

where we use the fact that σp is T -periodic. At this point, it is enough to remark
that condition (18) is the inequality (20) evaluated at time k = 0, i.e.,

PT (σp,Σ) ≤ P0(σp,Σ) = Σ,

to conclude that (18) implies (20), which finally implies (19). Please note that
the latter arguments allow us to always find a scalar M > 0 such that

Pk(σp,Σ) ≤M, k = 1, . . . , T.

By (20), we know that such an M is a uniform bound for all Pk(σp,Σ). By
Theorem 1, the schedule σp is bounded since Pk(σp,Σ) is bounded for one
initial condition Σ.

Now we are ready to prove Theorem 5.

Proof (Theorem 5). By Theorem 1, J is independent of the initial condition

Σ. As a result, let us choose Σ = 2J(σ)In. By the definition of J and ri, there

exists a K > 0, such that8

1

N

N∑
k=1

tr(Pk(σ,Σ)) ≤ J(σ) + ε, (21)

1

N

N∑
k=1

Isi∈Ik ≤ ri(σ) + εi. i = 1, . . . ,m (22)

for all N ≥ K.

Furthermore, there must exist infinitely many scalars k, such that

tr(Pk(σ,Σ)) ≤ 2J(σ),

which implies that

Pk(σ,Σ) ≤ 2J(σ)In = Σ. (23)

8We denote Pk(σ,Σ) as Pk(σ) as Σ is fixed throughout the whole section.
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As a result, we can choose T such that (21), (22) and (23) hold at the same

time, i.e.,

1

T

T∑
k=1

tr(Pk(σ,Σ)) ≤ J(σ) + ε, (24)

1

T

T∑
k=1

Isi∈Ik ≤ ri(σ) + εi. i = 1, . . . ,m (25)

PT (σ,Σ) ≤ Σ. (26)

Now define a periodic schedule σp = (J1,J2, . . .), such that

JkT+j = Ij , ∀k ∈ N0, j = 0, . . . , T − 1.

Please note that the new schedule σp is the same as σ for the first T steps and

then repeats itself afterwards. By definition, σp is periodic and (17) holds. By

using Lemma 6, since

PT (σp,Σ) = PT (σ,Σ) ≤ Σ,

it follows that

J(σp) ≤
1

T

T∑
k=1

tr(Pk(σp,Σ)) =
1

T

T∑
k=1

tr(Pk(σ,Σ)) ≤ J(σ) + ε.

In addition, the schedule σp is bounded, which completes the proof.

Remark 4. It is worth noticing that our proof is constructive and can be used
to construct a periodic approximated schedule from any schedules.

5. Sensor Scheduling in Lossy Networks

In this section, we show how the properties stated in Theorem 1 and 5 hold

true also in the case sensor scheduling over networks where sensor packets may

be randomly dropped.

First, define γJ ,k, where J ⊆ S, as a Bernoulli random variable such that

γJ ,k = 1 if at time k the set of indices of the received measurements is J , and
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γJ ,k = 0 otherwise. We assume that γJ ,k is independent over time. Further-

more, we assume that the probability P (γJ ,k = 1) only depends on the current

set of selected sensors Ik. As a result, we define the following probability

pJ ,I , P (γJ ,k = 1|Ik = I) . (27)

The covariance Pk satisfies the following recursive equation:

Pk =
∑
J⊆S

γJ ,kg(Pk−1,J ), P0 = Σ.

Thus, Pk is random. Similar to [25], we can derive the upper bound Vk of EPk
as

Vk =
∑
J⊆S

pJ ,Ig(Vk−1,J ), V0 = Σ.

Now define g̃(X, I) as

g̃(X, I) ,
∑
J⊆S

pJ ,Ig(X,J ).

Therefore

Vk = g̃(Vk−1, I), V0 = Σ.

At this point, it is enough to note that g̃ satisfies all the properties in Lemma 3.

Hence, by simply replacing Pk with Vk, all the results in Section 3 and Section 4

hold true also in this case.

6. Numerical Example

In this section, we consider a simple scalar system for which both the infinite-

horizon optimal schedule and the optimal periodic schedule can be derived:

xk+1 = xk + wk,

with Σ = Q = 1. We further assume that only one sensor is measuring the

state, i.e.,

yk = xk + vk.
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We consider an extreme case by assuming that the sensor is perfect. In other

words, the covariance of the measurement noise R = 0. We further assume that

S = {∅, {1}}. In this particular case, the g function can be simplified as

g(X, I) =

X + 1 if I = ∅

0 if I = {1}
. (28)

Given a schedule σ, let us define the set E(σ) as

E(σ) , {k ∈ N : Ik = {1}}.

Hence, E(σ) is the set of the time indices when the sensor is selected.

Consider the following optimization problem:

minimize
σ

J(σ)

subject to r1(σ) ≤ r, (29)

where r ≥ 2/3. The following theorem provides a lower bounds for (29)

Lemma 7. The optimal objective function J∗ of (29) satisfies

J∗ ≥ 1− r.

Proof. For an arbitrary schedule σ satisfying r1(σ) ≤ r, consider the finite

average

JN (σ) =
1

N

N∑
k=1

Pk.

By (28), if k ∈ E(σ), then Pk = 0. Otherwise, Pk ≥ 1. Define EN (σ) as

EN (σ) , E(σ)
⋂
{1, . . . , N}.

As a result,

JN (σ) ≥ 1

N
× (N − |EN (σ)|) = 1− |EN (σ)|

N
,

where | · | indicates the cardinality of a set. By taking limit on both sides, we

have

J(σ) = lim sup
N→∞

JN (σ) ≥ 1− r,

which completes the proof.
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Consider a periodic schedule of length T . The following theorem characterize

the optimal periodic schedule:

Lemma 8. For any periodic schedule σ with period T ≥ 2 and satisfies r1(σ) ≤
r, the following inequality holds

J(σ) ≥ 1− brT c
T

. (30)

where b·c denotes the standard floor operator. Furthermore, if r ≥ 2/3, then
equality is achieved for the following periodic schedule:

(I1, . . . , IT ) = ({1}, . . . , {1}︸ ︷︷ ︸
2brTc−T

, {1}, ∅, {1}, ∅, . . . , {1}, ∅︸ ︷︷ ︸
2T−2brTc

). (31)

Proof. (30) can be proved by the same argument as presented in the proof of

Lemma 7. It is easy to verify that (31) satisfies the equality in (30).

Since any real number r can be arbitrarily approximated by a rational number

brT c/T , we have the following theorem:

Theorem 9. If r ≥ 2/3, then the optimal objective function J∗ of (29) is given
by

J∗ = 1− r.

Figure 1 shows the optimality gap of optimal periodic schedule versus the

period T .

Remark 5. It can be seen that, given our choice of system parameters, the
optimality gap depends on how good a rational approximation of r is. Since the
rational number is dense in R, we can find a periodic schedule, the performance
of which is arbitrarily close to the optimal performance, given that the period
length is large enough. However, as is shown in Fig 1, the relationship between
the optimality gap and period length is non-monotonic and in general quite
involved.

7. Conclusion

In this paper, we consider the problem of infinite-horizon sensor scheduling

problem for linear Gaussian systems. We assume that at each time step only

a subset of all sensors can be selected to send their observations to the fusion

center. We prove that the infinite-horizon cost function and the boundedness
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Figure 1: Optimality Gap of the Optimal Periodic Schedule versus Period Length

of a schedule are independent of the initial covariance matrix. We further prove

that any feasible schedule can be arbitrarily approximated by a periodic sched-

ule. The proof of the latter result is constructive and it thus provides useful

insights into the design of computationally efficient periodic approximation with

quantifiable sub-optimality. The results are then extended to lossy networks. To

give to the reader some insight on the nature of the performance attainable with

periodic schedules, the results of the paper are particularized to a simple scalar

system for which both the infinite-horizon optimal schedule and the optimal

periodic schedules can be computed. Future research activities will aim at in-

vestigating the non-monotonic complex relationships between the performance

of periodic scheduling and the length of the period.
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