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Abstract

Wireless Sensor Networks (WSNs) enable a wealth of new applications where remote estimation is essential. Individual sensors
simultaneously sense a dynamic process and transmit measured information over a shared channel to a central base station.
The base station computes an estimate of the process state by means of a Kalman filter. In this paper we assume that, at
each time step, only a subset of all sensors are selected to send their observations to the fusion center due to channel capacity
constraints or limited energy budget. We propose a multi-step sensor selection strategy to schedule sensors to transmit for the
next T steps of time with the goal of minimizing an objective function related to the Kalman filter error covariance matrix.
This formulation, in a relaxed convex form, defines an unified framework to solve a large class of optimization problems over
energy constrained WSNs. We offer some numerical examples to further illustrate the efficiency of the algorithm.
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1 Introduction

Design and analysis of systems based on wireless sen-
sor networks (WSNs) involves cross disciplinary research
which spans domains within computer science, commu-
nications and control theory. A WSN is composed of low
power devices that integrate computing with heteroge-
neous sensing and wireless communication. WSN-based
systems are usually embedded in the physical world,
with which they interact by collecting, processing and
transmitting relevant data.
Sensor networks span a wide range of applications, in-
cluding environmental monitoring and control, health
care, home and office automation and traffic control [6].
In these applications, algorithms like Kalman filters can
be used to perform state estimation based on lumped-
parameter models of the physical phenomena. However,
WSN operating constraints such as power and band-
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2 This research is supported in part by CyLab at Carnegie
Mellon under grant DAAD19-02-1-0389 from the Army Re-
search Office. Foundation. The views and conclusions con-
tained here are those of the authors and should not be in-
terpreted as necessarily representing the official policies or
endorsements, either express or implied, of ARO, CMU, or
the U.S. Government or any of its agencies.

width often make it difficult to collect data from every
sensor at the sampling rate required for effective mon-
itoring. These considerations have led to the develop-
ment of sensor scheduling strategies to select, at each
time step, the subset of reporting sensors that mini-
mize a certain cost function, usually related to the es-
timation error. The state estimation problem of a lin-
ear time-invariant system over a digital communication
channel with a finite bandwidth capacity was introduced
by Wong and Brockett [18], [19]. The work by Sinopoli
et al. [16] shows the existence of a critical value of the
packet loss rate for bounded estimation error covariance.
Formulti-sensor scenario, Liu andGoldsmith [10] extend
the analytical work [16] to a two-sensor case. The trade-
off between communication constraints and estimation
performance is explored in the works of Ambrosino et
al. [1], [2].
Sensor network energy consumption minimization and
consequently lifetime maximization problems have been
active areas of research over the past few years, as re-
searchers soon realized that energy limitation consti-
tutes one of the major obstacles to the adoption of such
technology. Sensor network energy minimization is typ-
ically done via efficient MAC protocol design [11], or via
efficient scheduling of the sensor states [3, 9, 17]. In [7],
Gupta et al. propose a stochastic sensor selection algo-
rithm to minimize the expected steady state estimation
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error covariance. Shi et. al [15] consider sensor energy
minimization as a mean to maximize network lifetime
while guaranteeing a desired quality of estimation ac-
curacy. They [14] further propose a sensor tree schedul-
ing algorithm which leads to longer network lifetime. In
these papers, the authors consider the estimation per-
formance in terms of the steady state value of the error
covariance matrix.
Another important contribution comes from the work
of Joshi and Boyd [8], where they formulate the gen-
eral sensor selection problem and solve it by relaxing it
to a convex programming problem. By doing that, they
provide a very general framework that can handle vari-
ous performance criteria and energy and topology con-
straints. However, the main drawback of their approach
is that they assume the sensor measurements are un-
correlated. At a first glance, this assumption may seem
reasonable for measurements made at the same time.
However, when we consider the measurements at differ-
ent times, they are actually correlated as the states they
measure are coupled through the system dynamics. As
a result, the independent assumption fails and the ap-
proach proposed in [8] is not suited to address sensor
selection problems beyond the single step.
In this paper we address the sensor selection problem
over a WSN. The proposed approach breaks away from
the existing literature in several ways. The novelty of the
approach allows 1- formulation of the problem in a way
that can address several different performance criteria
over a large class of network constraints; 2- solution of
the sensor selection problem over arbitrary time steps in
an efficient manner; 3- use of correlated measurements.
Furthermore, as the complexity increases proportionally
with the length of the horizon, we propose a “divide and
conquer” approach consisting of dividing a long time
horizon into smaller ones and solving the sensor selection
problem sequentially over them, making feasible finding
solution over otherwise intractable large horizons. While
this solution is clearly suboptimal, we are able to bound
its performance analytically showing sublinear degrada-
tion of performance with respect to the fragmentation of
the horizon. This last result is particularly attractive for
the designer as it allows to explore the tradeoff between
optimality and computation complexity.

We accomplish such results firstly by providing a unified
framework capable to address, with the same methodol-
ogy, a large class of sensor selection problems; secondly
by a clever reformulation of the multistep Kalman filter
equations that directly relates the estimate at time k to
the past measurements, exposing the dependence of the
filter on the optimization variables, i.e. the subset of sen-
sors we select at each step. This allows to cast the prob-
lem in the standard quadratic optimization framework,
after relaxation of the L0 constraint to its L1 equivalent.

Simulation results are presented to illustrate the effec-
tiveness of the approach. We provide a real world exam-
ple of temperature monitoring over a planar field and a

comparison with existing results over a single step. Fi-
nally we validate the analytical results previously de-
ducted for the proposed “divide and conquer” approach.

The rest of the paper is organized as follows: in Section
2 we introduce a general sensor selection problem (P0)
for the optimization of the state estimation performance
involving different energy and topology constraints and
performance criteria. In Section 3, we first convert prob-
lem (P0) into an equivalent one (P ′

0), which explicitly
relates both the objective function and the constraints
to the optimization variables. We later relax the formu-
lation (P ′

0) into a quadratic programming problem (P1)
using the reweighted L1 approximation [5]. Finally, we
provide a bound on the improvement of the estimation
performance we can obtain by increasing the window size
T in problem (P0). Section 4 provides several simula-
tion results and illustrates the efficiency of our algorithm
comparing it both with the optimal solution when com-
putable, and other sensor selection techniques proposed
in the literature. In Section 5, we provide conclusions.
Section 6 reports some proofs of the main theorems.

2 Problem Formulation

In this section we derive a general framework that can
capture a large number of sensor selection problems.
Consider the linear system

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where wk, vk, x1 are independent Gaussian ran-
dom variables, x1 ∼ N (x̄1, Σ), wk ∼ N (0, Q)
and vk ∼ N (0, R) 3 . We assume xk ∈ R

n and
yk = [yk,1, yk,2, . . . , yk,m]T ∈ R

m is the vector of the
sensors’ measurements where yk,i is the measurement of
sensor i at time k. Let us indicate with γj , j = 1, . . . ,mT ,
the binary variables such that γm(k−1)+i = 1 if sensor i
transmits at step time k, for i = 1 . . .m and k = 1 . . . T ,
and it is 0 otherwise. Thus, at time k, the estimator
receives readings [γm(k−1)+1yk,1, . . . , γm(k−1)+myk,m]T .
The aim of this paper is to compute a sensor selection
sequence γ1, . . . , γmT from time 1 to time T , which
provides the optimal estimation performance while sat-
isfying specific energy and topology constraints.
In order to define a multi-step Kalman filter with sensor

3 Note that we start at time 1 instead of time 0.
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selection, let us introduce the following quantities:

Yk , [yT1 , y
T
2 , . . . , y

T
k ]

T ∈Rmk, (2)

Γk , diag(γ1, . . . , γmk) ∈Rmk×mk, (3)

~γ , [γ1, . . . , γmT ]
T ∈RmT , (4)

x̂∗k|k , E (xk|Yk) ∈Rn, (5)

P ∗
k|k , Cov (xk|Yk) ∈Rn×n, (6)

x̂k|k , E (xk|ΓkYk) ∈Rn, (7)

Pk|k , Cov (xk|ΓkYk) ∈Rn×n. (8)

The multi-step sensor selection problem can be formu-
lated as the following optimization problem

(P0) : min
~γ

T
∑

k=1

trace(QkPk|kQ
T
k ), (9)

s.t. H~γ ≤ b,

γi = 0 or 1, i = 1, . . . ,mT,

where Qk ∈ R
n′×n is of full row rank, H ∈ Rh×mT and

b ∈ Rh.

Next we will show how this formulation can address sev-
eral classes of sensor selection problems. In this frame-
work, the matrices Qk can be used to define the mini-
mization problem we want to tackle, while the matrix H
and the vector b define the constraints we impose on the
wireless sensors. In the following paragraphs we outline
some of the problems that can be tackled in the pro-
posed framework, by appropriate choice of the matrices
Qks,H and the vector b. Let us start with the objective
function.

• Minimization of the final estimation error
Assume we want to minimize the estimation error

at time T . Thus, we can choose

Q1, . . . ,QT−1 = 0, QT = I.

• Minimization of the average estimation error
Assumewewant tominimize the average estimation

error from time 1 to time T . Thus, we can choose

Qk = I, k = 1, . . . , T.

• Minimization of the estimation error of a single state
Assume at time k we are interested in the ith state

xk,i of the system. Thus, we can choose

Qk = [δ1,i, . . . , δn,i] ∈ R
1×n,

where δi,j = 1 if i = j, it is 0 otherwise. Notice that
n′ = 1 6= n in general, which explains the reason why
we do not require Qk to be a square matrix.

• Minimization of the cost function of a finite horizon
Linear Quadratic Gaussian (LQG) regulation problem
Assume we have a LQG regulation problem where

the system dynamic is given by

xk+1 = Axk + Buk + wk, yk = Cxk + vk,

and the cost function is

JT = E

[

xT
TWTxT +

T−1
∑

k=1

(xT
kWkxk + uT

kUkuk)

]

,

where Wk, Uk are positive semidefinite matrices.
Given a sensor selection schedule, it is well known that
the optimal controller and estimator, which minimize
the LQG cost function, can be designed separately.
The optimal control law is

uk = −(BTSk+1B + Uk)
−1BTSk+1Ax̂k|k,

where Sk satisfies the backward recursive equations

Sk = ATSk+1A+Wk

− ATSk+1B(BTSk+1B + Uk)
−1BTSk+1A,

with ST = WT . The optimal estimator is still the
Kalman filter. The optimal value of the cost function
is

J∗
T = trace(S1Σ) +

T−1
∑

k=1

trace(Sk+1Q)

+

T−1
∑

k=1

trace[(ATSk+1A+Wk − Sk)Pk|k].

(10)

Thus, in order to find the best sensor selection sched-
ule which minimizes J∗

T , we can let

QT
kQk = ATSk+1A+Wk − Sk,QT = 0.

Next we will show how several network constraints can
be formulated within the proposed framework.

• Fixed number of sensors to be used at each time step
Assume at each time step we want to select no more

than p < m sensors. Thus, the constraints can be
written as

m
∑

i=1

γm(k−1)+i ≤ p, k = 1, . . . , T . (11)

• Sensor energy constraints
Assume each sensor has initial energy E1, . . . , Em

and each observation consumes e1, . . . , em energy
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units respectively. As a result, assuming for each sen-
sor i the initial energy Ei is a multiple of ei, it can do
at most Ei/ei observations until its battery runs out.
Since we cannot use the sensor after the battery dies,
the energy constraints can be written as

T
∑

k=1

γm(k−1)+i ≤ Ei/ei, i = 1, . . . ,m . (12)

• Multi-hop sensor networks
Consider that the sensor network has a tree struc-

ture and the estimator is the root node. The network
uses a data aggregation protocol, where each node for-
wards the observation packets to its parent until the
packet reaches the root. Moreover, the nodes on the
route of the packet will add their own readings into
the packet. As a result, a node needs to be selected
to send observations if a child node is selected. Define
the set of child nodes of sensor i to be Ci. We can write
the topology constraints of the network as

γm(k−1)+i ≥ γm(k−1)+j , k = 1, . . . , T, j ∈ Ci . (13)

These examples clearly demonstrate the generality of
the formulation and its applicability to a large class of
problems.

3 Main Result

This section is devoted to manipulating and relaxing
the optimization problem (P0) to make it explicit and
convex with respect to the optimization variables.

3.1 Reformulation

In this subsection, we will derive the relation between
Pk|k and ~γ explicitly. First let us consider the estimation
problem for a linear system without sensor selection,
i.e. all the readings from sensors are used. Kalman filter
provides the optimal solution which takes the following
form:

x̂∗1|0 = x̄1, P ∗
1|0 = Σ (14)

x̂∗k+1|k = Ax̂∗
k|k, P ∗

k+1|k = AP ∗
k|kA

T +Q

K∗
k = P ∗

k|k−1C
T (CP ∗

k|k−1C
T +R)−1

x̂∗k|k = x̂∗
k|k−1 +K∗

k(yk − Cx̂∗
k|k−1)

P ∗
k|k = P ∗

k|k−1 −K∗
kCP ∗

k|k−1.

This formulation of the Kalman filter explicitly shows
the dependence of the estimated state x̂∗

k|k from yk. How-

ever the dependence from the “old” measurements is
recursive. In the following Lemma we express the esti-
mated state x̂∗k|k given by the Kalman filter in terms of

all the observations, represented by Yk.

Lemma 1 Consider a linear system as in (1). The state
estimation x̂∗

k|k given by the Kalman filter is

x̂∗k|k = G∗
k















y1
...

yk−1

yk















+H∗
k x̄1 = G∗

kYk +H∗
k x̄1 , (15)

where G∗
1 = K∗

1 , H
∗
1 = I − K∗

1C and G∗
k, H

∗
k can be

evaluated recursively as

G∗
k+1 = [(A−K∗

k+1CA)G∗
k, K

∗
k+1] ,

H∗
k+1 = (A−K∗

k+1CA)H∗
k ,

(16)

where K∗
k is the optimal Kalman gain given by (14).

PROOF. Wewill prove the lemma by induction. When
k = 1, by (14), we know that

x̂1|1 = x̄1+K∗
1 (y1−Cx̄1) = K∗

1Y1+(I−K∗
1C)x̄1. (17)

Hence G∗
1 = K∗

1 and H∗
1 = I −K∗

1C. Now suppose that
(16) holds for k = 1, . . . , N . When k = N + 1, we have

x̂∗N+1|N = Ax̂∗
N |N = AG∗

NYN +AH∗
N x̄1

x̂∗N+1|N+1 = x̂∗N+1|N +K∗
N+1(yN+1 − Cx̂∗

N+1|N )

= K∗
N+1yN+1 + (A−K∗

N+1CA)G∗
NYk

+ (A−K∗
N+1CA)H∗

N x̄1 .
(18)

Hence, (16) holds for k = N + 1 and, by induction, we
conclude the proof.

Now, let us consider the sensor selection problem. In
the case of sensor selection, the estimated state x̂k|k =
E(xk|ΓkYk) can still be written as

x̂k|k = GkΓkYk +Hkx̄1,

Pk|k = Cov(x̂k|k − xk) = Cov(GkΓkYk +Hkx̄1 − xk)

= Cov(GkΓkYk − xk), (19)

where Gk, Hk are the optimal gains under the sensor
selection scheme Γk. The last equality is true sinceHk x̄1
is a deterministic vector. In general, Gk is different from
G∗

k and depends on the sensor selection strategy Γk we
choose. However we will not write Gk explicitly in terms
of Γk, because that will lead to a Riccati equation, which
is hard to analyze in general. In contrast, by exploiting
the optimality of Kalman filter, we will optimize over
the matrix Gk. In the next Theorem, we propose a new
formulation for the minimization problem of trace(Pk|k)
over both Gk and Γk.
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Theorem 2 Consider the linear system (1) and let Γk

be the sensor selectionmatrix. The minimization problem
over Γk of the trace(Pk|k), given by the Kalman filter,
can be formulated as

min
Gk,Γk

‖GkΓkSk −G∗
kSk‖

2
F , (20)

where G∗
k is given in (16), ‖·‖F represents the Frobenius

norm and

Sk ∈ R
mk×mk : Cov(Yk) = SkSk . (21)

PROOF. In the case of sensor selection, the covariance
matrix can be written as

Pk|k = Cov(x̂k|k − xk) = Cov(GkΓkYk − xk)

= Cov[(GkΓk −G∗
k)Yk +G∗

kYk +H∗
k x̄1 − xk]

= Cov[(GkΓk −G∗
k)Yk] + Cov(G∗

kYk +H∗
k x̄1 − xk)

= (GkΓk −G∗
k)Cov(Yk)(GkΓk −G∗

k)
T + P ∗

k|k .

(22)

The second equality holds becauseH∗
k x̄1 is deterministic

and furthermore it does not change the covariance. The
decomposition of the covariance matrix in the third line
of equation (22) is possible since, by the optimality of
Kalman filter, xk − x̂∗k|k = xk −G∗

kYk −H∗
k x̄1 is orthog-

onal to Yk. Therefore the cost function can be written as

min
Γk

trace(Pk|k) = min
Γk

trace(P ∗
k|k)+

+ min
Γk,Gk

trace
[

(GkΓk −G∗
k)Cov(Yk)(GkΓk −G∗

k)
T
]

.

(23)

Since the first term does not depend on Γk, we will focus
only on the second term. Let us decompose Cov(Yk) as
SkSk, where Sk is symmetric. Since Cov(Yk) is positive
semidefinite, we can always find Sk. Thus

(GkΓk −G∗
k)Cov(Yk)(GkΓk −G∗

k)
T

= (GkΓkSk −G∗
kSk)(GkΓkSk −G∗

kSk)
T .

(24)

As a result, theminimization problemminΓk
trace(Pk|k)

is equivalent to

min
Γk,Gk

trace
[

(GkΓkSk −G∗
kSk)(GkΓkSk −G∗

kSk)
T
]

=

min
Γk,Gk

‖GkΓkSk −G∗
kSk‖

2
F .

From Theorem 2 we can derive the following corollary.

Corollary 3 Consider the linear system (1) and let Γk

be the sensor selectionmatrix. The minimization problem

over Γk of the trace(QkPk|kQ
T
k ) given by the Kalman

filter can be formulated as

min
Γk,Gk

‖QkGkΓkSk −QkG
∗
kSk‖

2
F , (25)

where where G∗
k is given in (16) and

Sk ∈ R
mk×mk : Cov(Yk) = SkSk .

PROOF. It follows from the proof of Theorem 2.

Now let us define the matrix

Gk , QkGkΓk ∈ R
n′×mk . (26)

The following theorem relates γi and Gk.

Theorem 4 Denote the ith column of the matrix Gk as
~Gk,i. The following inequality holds:

γi ≥

∥

∥

∥

∥

∥

T
∑

k=k′

∥

∥

∥

~Gk,i

∥

∥

∥

1

∥

∥

∥

∥

∥

0

, (27)

where ‖·‖0 (called the L0 norm 4 ) of a scalar is 0 if the
scalar is 0 (it is 1 otherwise) and k′ is the smallest number
which satisfies mk′ > i.

PROOF. It follows directly from the definition of Gk.

Using all the previous arguments, we can conclude that
the optimization problem (P0) is equivalent to

(P ′
0) : min

Gk,~γ

T
∑

k=1

‖GkSk −QkG
∗
kSk‖

2
F , (28)

s.t. H~γ ≤ b

γi ≥

∥

∥

∥

∥

∥

T
∑

k=k′

∥

∥

∥

~Gk,i

∥

∥

∥

1

∥

∥

∥

∥

∥

0

i = 1 . . .mT. (29)

Remark 5 The main improvement of formulation (P ′
0)

over (P0) is that instead of trace(QkPk|kQk), we now
have an explicit quadratic objective function as well an
explicit relation between the said objective function and
the γis.

In general, sensor selections are hard combinatorial
problems as they involve binary constraints. For large

4 L0 is in fact not a norm.
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systems the problem becomes computationally infea-
sible. Solutions in this case are based on heuristic
methods. In this paper, the formulation (P ′

0) is also a
combinatorial problem since the last constraint of (P ′

0)
contains an L0 norm. However, formulation (P ′

0) allows
us to easily relax it to a convex problem, which will be
discussed in the next subsection.

3.2 Reweighted L1 approximation

This subsection describes a reweighted L1 approxima-
tion of problem (P ′

0).
As discussed in the previous subsection, (P ′

0) is a combi-
natorial problem. In principle, to find the optimal solu-
tion, we should check all possible sensor selection sched-
ules verifying the constraints. However, if the number
of sensors is large, this evaluation becomes infeasible.
Hence we have to consider solutions which are subopti-
mal, but computationally feasible. We will derive subop-
timal solution based on a relaxed convex version of the
original optimization problem [4].
One standard technique to solve the L0 optimization
problem (P ′

0) is to replace the L0 norm with L1 norm.
However, the main drawback of this approach is that
in L1 larger numbers are penalized much more than in
L0, where all the non-zero numbers are treated equally.
In [5], the authors provide a reweighted L1 minimization
to address this issue. According to this method, the L0

norm is substituted with a weighted L1 norm, where the
weights are chosen to avoid the penalization of the big-
ger coefficients. The authors further propose an iterative
algorithm that alternates between a minimization phase
and another one involving the redefinition of the weights.
The authors find that this reweighted L1 minimization
outperforms traditional L1 minimization in many situa-
tions. In the following we use this algorithm to relax the
optimization problem (P ′

0). The algorithm is composed
of 4 steps:

(1) Set the iteration count l to zero and set the weights
vector to w0

i = 1 for i = 1, ....,mT .
(2) Solve the weighted L1 minimization problem

(P1) : min
Gk,~γ

T
∑

k=1

‖GkSk −QkG
∗
kSk‖

2
F , (30)

s.t. H~γ ≤ b

γi ≥ wl
i

T
∑

k=k′

∥

∥

∥

~Gk,i

∥

∥

∥

1
i = 1 . . .mT.

Let the solution be γl
1, . . . , γ

l
mT .

(3) Update the weights

wl+1
i =

1

γl
i + ǫ

i = 1, . . . ,mT.

(4) Terminate if either l reaches a specified maximum
number of iterations lmax or the solution has con-
verged. Otherwise, increase l and return to step 2.

Remark 6 As in [5], we introduce the parameter ǫ >
0 in step 3 in order to avoid inversion of zero-valued
components in ~γ.

Remark 7 We do not make any assumption on the co-
variance matrices Q, R, Σ during the reformulation and
relaxation steps. Hence, the relaxed problem (P1) can
handle correlated measurement noise.

Remark 8 Usually the problem takes less than 10
reweightings for the solution to converge 5 . For each
weighted minimization, it is easy to see that the problem
is a quadratic programming(QP) problem. In [13], the
authors proposed an interior point algorithm for solving
QP with O(N2.5) arithmetic operations per iteration,
whereN is the total number of optimization variables. In
our problem, each Gk is a n×mk matrix and ~γ ∈ R

mT .
Hence, the total number of optimization variables is

N = nm

T
∑

k=1

k +mT = nmT (T + 1)/2 +mT.

Since we do not need an accurate solution of QP, we can
assume that the number of iterations needed for solving
QP is fixed. Hence, the complexity of our algorithm is
O(n2.5m2.5T 5).

3.3 Multi-step Analysis

In the previous section we have shown how the multi-
step sensor selection problem in case of correlated noise
can be relaxed into a convex minimization problem. Al-
though the relaxation technique significantly contributes
to reducing the computational complexity, the problem
is still intractable for large T s. In fact, as the window
size T increases, the number of optimization variables
rapidly grows (O(T 2)) as shown in the previous sub-
section. A natural solution to this problem is to divide
the scheduling period T into smaller intervals and solve
the optimization problem sequentially for each of these
smaller intervals. This is clearly an approximation which
will yield suboptimal results. In this section, we will pro-
vide a complete analysis of the approximation and we
will prove that the gap between the greedy approach and
optimal is at most linear with respect to the variation of
the window size.
Let us indicate with S1 the optimal sensor selection
strategy given by Problem (P0) in [1 ,NT ] withQk = In.
Let Pk|k(S1) be the estimation error covariance at time k

5 We do not need to have a very accurate solution because
we will threshold ~γ and make it binary.
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given by the schedule S1. Consider now the greedy algo-
rithm that first solves problem (P0) from time 1 to time
T and then solves it again for time T+1 to 2T and so on.
Let us indicate with S2 the sensor selection strategy in
[1 ,NT ] given by the greedy method and with Pk|k(S2)

the corresponding error covariance matrix 6 .

Remark 9 To compare the optimal sensor selection
strategy in [1 ,NT ] with the solution of the greedy algo-
rithm we assume the constraints of Problem (P0) on γis
in each small window [KT + 1, (K + 1)T ] are decoupled
from each other, which means that the constraints take
the following form











H1

.. .

HN











~γ ≤











b1
...

bN











, γi = 0 or 1, i = 1, . . . , NmT,

where each Hi has mT columns.

In this following theorem we characterize the loss of per-
formance of the sensor selection strategy S2 compared
to S1 in terms of objective function of Problem (P0) in
[1 ,NT ].

Theorem 10 The loss of performance of schedule S2

with respect to S1 satisfies the following inequality:

NT
∑

k=1

trace(Pk|k(S2))−
NT
∑

k=1

trace(Pk|k(S1)) ≤ (N − 1)
ρβ

α

where

ρ = inf{r > 0|PKT |KT (S2) ≤ (r + 1)PKT |KT (S1),

K = 1, . . . , N − 1} (31)

α = sup{r > 0|Q ≥ r(APk|k(S1)A
T )

, k = T + 1, . . . , NT} (32)

β = sup{trace(Pk|k(S1))|k = T + 1, . . . , NT}. (33)

PROOF. See Appendix.

Let S∗ be the schedule that selects all the sensors and Sφ

be the schedule that selects no sensors. For any schedule
S, we know that

Pk|k(S∗) ≤ Pk|k(S) ≤ Pk|k(Sφ) . (34)

If the system is detectable, then Pk|k(S∗) converges.
Moreover if we assume that the system is stable also

6 For simplicity we just choose Qk = I

Pk|k(Sφ) converges. It means that Pk|k(S∗) and Pk|k(Sφ)
are uniformly bounded and hence there exists two posi-
tive semidefinite matrices P and P , such that

P ≤ Pk|k(S∗) ≤ Pk|k(S) ≤ Pk|k(Sφ) ≤ P .

Since the above inequality is independent of both sched-
ule S and time index k, we can conclude that there
exist uniform bounds for α, β, ρ which are independent
of the real window size T . Moreover, the loss incurred
when dividing the whole window in N parts will always
be sublinear with respect to N .
In the meanwhile, solving (P0) on [0, NT ] needs
O(n2.5m2.5(NT )5) arithmetic operations while to com-
pute schedule S2, we only need O(n2.5m2.5T 5) arith-
metic operations for N smaller windows of size T .
Hence, reducing the window size by N will reduce the
computation complexity to N−4 of the original prob-
lem. We can conclude that when the system is large,
the greedy algorithm is a reasonable approach to reduce
computational complexity.

4 Simulation Result

In this section we will illustrate the efficiency of the sen-
sor selection strategy with some numerical examples.
Throughout this section we will consider a system com-
posed of m sensors from which only p of them can be se-
lected at each time. The sensors measurements are used
to estimate a dynamical system consisting of n states.
We assume to minimize the average estimation error,
hence we impose that Qk = I, k = 1, . . . , T .

4.1 Examples: Temperature Monitoring

Let us consider a numerical example in which a sensor
network is deployed to monitor the temperature in a
planar closed region. We model the heat process in the
region of side l as

∂u

∂t
= α

(

∂2u

∂x2
1

+
∂2u

∂x2
2

)

, (35)

with boundary conditions

∂u

∂x1

∣

∣

∣

∣

t,0,x2

=
∂u

∂x1

∣

∣

∣

∣

t,l,x2

=
∂u

∂x2

∣

∣

∣

∣

t,x1,0

=
∂u

∂x2

∣

∣

∣

∣

t,x1,l

= 0,

(36)
where x1, x2 indicate the coordinates of the region;
u(t, x1, x2) denotes the temperature at time t at loca-
tion (x1, x2) and α indicates the speed of the diffusion
process. In [12] the model has been discretized in space
with a N ×N grid and in time with frequency of 1 Hz
yielding the following linear discrete time model

Uk+1 = AUk + wk ,

7



Fig. 1. Average relative estimation performance gap of the
proposed sensor selection strategy (red solid line) and the
random strategy (blue dashed line) with respect to the op-
timal strategy.

where the vector Uk ∈ R
N2

indicates the temperature at

each point of the grid, A ∈ R
N2×N2

takes into account
the diffusion process and wk is the process noise.

Let us assume that m sensors are randomly distributed
in the region and each sensor measures a linear combi-
nation of the temperature of the grid around it (see [12])
so that the measurement equation becomes

Yk = CUk + vk ,

where Yk ∈ R
m is the measurement vector, vk is the

measurement noise and C ∈ R
m×N2

is defined in [12].

For the simulations, we impose α = 0.1 m2/s, l = 4 m
andN = 3 (hence the grid size is h = 2 m). Moreover, we
assume the WSN is composed by m = 20 nodes. In this
section we consider the problem of minimizing the next
step estimation error, i.e. T = 1, and we also assume
uncorrelated noise with identity covariance matrix both
for the process and the measurement noise. To show the
quality of our sensor selection strategy, we compare it
in terms of trace(Pk|k) with the real optimal sensor se-
lection scheme. The optimal sensor selection strategy is
evaluated with an exhaustive search of the solution set,
which is composed by

(

m
p

)

elements. It is straightforward

to recognize that it can be computed just for small net-
works. We assume that 1 ≤ p ≤ 20 and, for each value of
p, we consider the estimation performance both of our
strategy and a random strategy and we normalize them
with respect to the optimal one. We average the simula-
tion results for each p over 50 random placements of the
sensors in the planar region. In Figure 1, we show the
performance gap for 1 ≤ p ≤ 20. The figure clearly il-
lustrates that the proposed sensor selection strategy as-
sures near optimal performance for all values of p with
a gap that rapidly decreases to zero as p increases. On
the other hand, the performance of the random method
reaches a maximum gap of 20% compared to the optimal
strategy and it is always sensibly lower than the perfor-
mance of proposed strategy.

Fig. 2. Relative estimation performance gap of the sensor
selection strategy in [8] with respect to the proposed strategy.

4.2 Comparison to state of the art

In this section we consider again the minimization prob-
lem of the next step estimation error with uncorrelated
noise and we compare our algorithm to the one proposed
in [8] for a WSN of m = 50 nodes 7 . To perform the
comparison we consider random generated systems with
n = 20 states whereA, C are chosen randomly with each
entry independently and identically distributed (iid) on
[0, 1]. The matrix Q is computed by multiplying a ran-
domly generated matrix with its transpose (to make
them positive definite), where each entry is also iid on
[0, 1]. We choose Σ = In. In Figure 2 we plot the perfor-
mance gap between the proposed algorithm and the one
in [8]. In particular, for each value of p, we evaluate the
estimation performance of both approaches over a time
horizon of Th steps by applying the one step sensor selec-
tion method step by step. To achieve a statistic perfor-
mance analysis, we average the simulation results over
50 random generated systems for each p. In Figure 2 we
show the performance gap of the strategy in [8] with re-
spect to our sensor selection strategy for Th = 1, 4, 7, 10.
Figure 2 shows that our sensor selection strategy per-
forms better than the one in [8] for all the values of p.
Moreover the gap increases with the time horizon Th and
it is approximately 33% in case of Th = 10 and p = 1.
However, it is important to recognize that our sensor se-
lection method is computationally more intensive than
the one in [8]. In particular, the number of arithmetic
operations for the algorithm in [8] is O(m3) while for our
one step sensor selection, is O(n2.5m2.5).
Finally, we want to remark that the one step sensor se-
lection strategy with uncorrelated measurements rep-
resents just a possible application of the proposed ap-
proach. We do not perform any comparison for either
the multi-step case or the one with correlated noises as
the optimal one is practically computationally infeasible

7 In this comparison we do not implement the local opti-
mization algorithm proposed in [8] to improve the sensor se-
lection performance, since it is a general technique that can
be applied to any sensor selection schemes, including ours.
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Fig. 3. Relative gap of trace(P1|1 + P2|2 + P3|3 + P4|4) of
solving the optimization problem in subintervals of T = 1,
T = 2 or T = 4, normalized to the case of T = 4.

and we are unaware of any other method in the litera-
ture.

4.3 Multi-step sensor selection: a “divide and conquer”
approach

In theorem 10 we bounded the performance loss due to
dividing the horizon T into smaller intervals and per-
forming sensor scheduling over each of them. We con-
sider the problem of minimizing the estimation error
over a window size of 4 steps, i.e. we assume to minimize
trace(P1|1+P2|2+P3|3+P4|4). We wish to compare the
solution of problem (P0) for T = 4 with a greedy algo-
rithm that solves (P0) over subintervals T ′ = 1 and 2
until the time window T = 4 is reached. We assume a
WSN of m = 10 nodes is used to monitor a random gen-
erated system of dimension n = 10 and we select p = 2
sensor each step. In figure 3 we indicate the performance
gap, in terms of trace(P1|1 +P2|2 +P3|3 +P4|4), solving
the optimization problem in subintervals of T = 1, 2, 4,
normalized to the case of T = 4. The simulation results
show that the performance loss is quasi linear and not
significant, confirming that the “divide and conquer” ap-
proach can be a suitable approximation to the multi-step
approach for large time horizons.

5 Conclusions

In this paper we considered the problem of sensor
scheduling for state estimation of a dynamical system
over a sensor network. Scheduling sensor’s readings
is crucial to save valuable power and bandwidth in
energy-constrained sensor networks. We provide a gen-
eral optimization framework to address a large class of
sensor scheduling problems, with several different cost
functions and network constraints over a predetermined
time horizon. We significantly advance the state of the
art as existing approaches are limited to scheduling at
most one step ahead and can not handle either corre-
lated measurement or general network constraints.
We provide a solution to the optimization problem by

reformulating it using a convex relaxation based on a
reweighted L1 approximation. Finally we analyze the
loss of performance related to the choice of the horizon
and we show that loss of performance is sublinear with
the ratio between different horizons. Numerical exam-
ples are provided to illustrate the effectiveness of the
proposed algorithm in providing quasi-optimal perfor-
mance while reducing the high computational complex-
ity associated with the sensor selection problem.

6 Appendix

In order to prove Theorem 10, we need some preliminary
lemmas.
Let us define the following functions:

g(X,S) = X + S , h(X,S) = (X−1 + S)−1

where X,S ∈ R
n×n.

Lemma 11 Suppose that X,Y ∈ R
n×n are positive

semidefinite and X ≥ Y , then 8

g(X,S) ≥ g(Y, S) , h(X,S) ≥ h(Y, S).

PROOF. The proof easily follows from the definition
of positive semidefinite matrix.

Lemma 12 Assume X,S ∈ R
n×n are positive semidef-

inite and let α > 0 be a scalar such that S ≥ αX. Then

g((1 + ρ)X,S) ≤ (1 +
ρ

1 + α
)g(X,S) ∀ρ > 0 . (37)

PROOF.

g((1 + ρ)X,S)− (1 +
ρ

1 + α
)g(X,S) =

(1 + ρ)X + S − (1 +
ρ

1 + α
)(X + S) =

ρ(αX − S)

1 + α
≤ 0 .

Lemma 13 Assume X,S ∈ R
n×n are positive semidef-

inite. Then

h((1 + ρ)X,S) ≤ (1 + ρ)h(X,S), ∀ρ > 0 . (38)

PROOF. Since X,S are both positive semidefinite, we
know that there exists a matrix U ∈ R

n×n that can
diagonalize X−1 and S simultaneously, i.e.

X−1 = U−1(U−1)T , S = U−1Λ(U−1)T , (39)

8 All the comparisons between matrices in this section are
in the positive semidefinite sense
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where Λ = diag(λ1, . . . , λn) and λi ≥ 0. Hence

h((1 + ρ)X,S)− (1 + ρ)h(X,S)

= UT
{

[

(1 + ρ)−1I +Λ
]−1

− (1 + ρ)(I + Λ)−1
}

U

= UTdiag(. . . ,
1 + ρ

1 + (1 + ρ)λi

−
1 + ρ

1 + λi

, . . .)U .

It is easy to see that the diagonal matrix in the equation
above is negative semidefinite. Thus,

h((1 + ρ)X,S) ≤ (1 + ρ)h(X,S), ∀ρ > 0 .

We are now ready to prove Theorem 10.

PROOF. Due to space limits, we will only prove the
theorem for N = 2 as the proof for arbitrary N follows
the same reasoning. Let us define a third sensor schedul-
ing S3 as:

S3[1 , T ] = S2[1 , T ]

S3[T + 1 , 2T ] = S1[T + 1 , 2T ]

We denote the estimation error covariance of schedule
S3 at time k to be Pk|k(S3).
By definition of the sensor scheduling S2, we know that
from time 1 to T it represents the optimal scheduling,
which means that

T
∑

k=1

trace(Pk|k(S3)) =

T
∑

k=1

trace(Pk|k(S2))

≤
T
∑

k=1

trace(Pk|k(S1)). (40)

Moreover, from time T + 1 to time 2T , the schedule S2

is the optimal for initial condition PT |T (S2). Since the
schedule S3 has the same initial condition PT |T (S3) =
PT |T (S2), we have

2T
∑

k=T+1

trace(Pk|k(S3)) ≥
2T
∑

k=T+1

trace(Pk|k(S2)). (41)

Combining (40) and (41), we get

2T
∑

k=1

trace(Pk|k(S2))−
2T
∑

k=1

trace(Pk|k(S1))

≤
2T
∑

k=T+1

trace(Pk|k(S3))−
2T
∑

k=T+1

trace(Pk|k(S1)).

Starting at time T , the prediction at time T + 1 is

PT+1|T (S3) = APT |T (S3)A
T +Q = g(APT |T (S3)A

T , Q)

PT+1|T (S1) = APT |T (S1)A
T +Q = g(APT |T (S1)A

T , Q).

Hence, by Lemmas 11 and 12,

PT+1|T (S3) = g(APT |T (S3)A
T , Q)

≤ g((1 + ρ)APT |T (S1)A
T , Q)

≤ (1 +
ρ

1 + α
)g(APT |T (S1)A

T , Q)

= (1 +
ρ

1 + α
)PT+1|T (S1),

where ρ and α are defined in (31) and (32). At time
T + 1, S1 and S3 choose the same sensors. Suppose the
corresponding measurement is

yT+1 = CT+1xT+1 + vT+1, (42)

where vT+1 ∼ N (0, RT+1). Using information filter, we
can write the measurement update at time T + 1 as

PT+1|T+1(S3) =
[

(PT |T (S3))
−1 + CT

T+1R
−1
T+1CT+1

]−1

= h(PT+1|T (S3), C
T
T+1R

−1
T+1CT+1)

PT+1|T+1(S1) = h(PT+1|T (S1), C
T
T+1R

−1
T+1CT+1)

Hence, from Lemmas 11 and 13,

PT+1|T+1(S3) = h(PT+1|T (S3), C
T
T+1R

−1
T+1CT+1)

≤ (1 +
ρ

1 + α
)h(PT+1|T (S1), C

T
T+1R

−1
T+1CT+1)

= (1 +
ρ

1 + α
)PT+1|T+1(S1) .

By induction, we know that

PT+k|T+k(S3) ≤

[

1 +
ρ

(1 + α)k

]

PT+k|T+k(S1) ,

k = 1, . . . , T. (43)

Hence,

2T
∑

k=T+1

trace(Pk|k(S3))−
2T
∑

k=T+1

trace(Pk|k(S1)) ≤

T
∑

k=1

ρ

(1 + α)k
trace(PT+k|T+k(S1)) ≤

T
∑

k=1

ρβ

(1 + α)k
≤

ρβ

α
,

which concludes the proof.
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