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Resilient Detection in the Presence of Integrity Attacks
Yilin Mo∗, João Hespanha†, Bruno Sinopoli∗

Abstract—We consider the detection of a binary random
state based on m measurements that can be manipulated by
an attacker. The attacker is assumed to have full information
about the true value of the state to be estimated as well as the
values of all the measurements. However, the attacker can only
manipulate n of the m measurements. The detection problem
is formulated as a minimax optimization, where one seeks to
construct an optimal detector that minimizes the “worst-case”
probability of error against all possible manipulations by the
attacker. We show that if the attacker can manipulate at least
half the measurements (n ≥ m/2) then the optimal worst-case
detector should ignore all m measurements and be based solely
on the a-priori information. When the attacker can manipulate
less than half of the measurements (n < m/2), we show that
the optimal detector is a threshold rule based on a Hamming-
like distance between the (manipulated) measurement vector
and two appropriately defined sets. For the special case where
n = (m− 1)/2, our results provide a constructive procedure to
derive the optimal detector. We design a heuristic detector for
the case where n � m, and prove the asymptotic optimality
of the detector when m → ∞. Finally we apply the proposed
methodology in the case of i.i.d. Gaussian measurements.

I. INTRODUCTION

The increasing use of networked embedded sensors to
monitor and control critical infrastructures provides poten-
tial malicious agents with the opportunity to disrupt their
operations by corrupting sensor measurements. Supervisory
Control And Data Acquisition (SCADA) systems, for example,
run a wide range of safety critical plants and processes,
including manufacturing, water and gas treatment and distri-
bution, facility control and power grids. A successful attack to
such kind of systems may significantly hamper the economy,
the environment, and may even lead to the loss of human
life. The first-ever SCADA system malware (called Stuxnet)
was found in July 2010 and rose significant concern about
SCADA system security [1], [2]. While most SCADA systems
are currently running on dedicated networks, next generation
SCADA will make extensive use of widespread sensing and
networking, both wired and wireless, making critical infras-
tructures susceptible to cyber security threats. The research
community has acknowledged the importance of addressing
the challenge of designing secure detection, estimation and
control systems [3].
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We consider a robust detection problem inspired by security
concerns that arise from the possible manipulation of sensor
data. We focus our attention on the detection of a binary
random variable θ from independent measurements collected
by m sensors, with the caveat that some of these measurements
can be manipulated by an attacker. The attacker is assumed
to have full information about the true value of θ and all
the measurements and uses this information to manipulate the
data available to the detector. We assume that the attacker
has total control over n corrupted sensors, where n ≤ m,
and he can change their values arbitrarily. To minimize the
detector’s performance degradation in the face of such attacks,
we construct minimax detectors that minimize the “worst-
case” probability of detection error, where worst-case refers
to all possible manipulations available to the attacker.

We want to analyze the detector design problem for all
the cases where n ≤ m. We start by considering the case
n ≥ m/2, in which the attacker can manipulate at least half
ofthe measurements. We show that in this scenario the optimal
worst-case detector should ignore all m measurements and be
based solely on the a-priori distribution of θ. This result is
in sharp contrast with non-adversarial detection theory where
even very noisy data can provide some information. This also
highlights the power of adversarial manipulation of sensor data
since an attacker that has the ability to manipulate only half
of the sensors, effectively destroys all the information that can
be inferred from the full set of sensors.

For the case n < m/2, in which the attacker can manipulate
strictly less than half of the sensors, the optimal estimator
typically depends on the sensor data. Moreover, we show
that the optimal estimator consists of a threshold rule that
compares a Hamming-like distance between the (manipulated)
measurement vector and two appropriately defined sets. In
general, these sets may be difficult to compute. In the boundary
case n = (m − 1)/2 we provide a procedure to construct
the optimal estimator, which turns out to be a simple voting
scheme. If the percentage of compromised sensors are small,
i.e., n � m, we designed a heuristic detector based on
truncated sum, which achieves asymptotic optimality when m
goes to ∞. The proposed methodology is then applied for
the case of Gaussian i.i.d. sensors measurements (prior to the
adversarial manipulation).

Related Work

Minimax robust detection problems have been extensively
studied in the past decades [4]–[8]. A classical approach
assumes that the conditional distribution of sensor measure-
ments under each hypothesis lies in a set of probability
distributions, which is called an uncertainty class. One then
identifies a pair of “least favorable distributions” (LFDs) from
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the uncertainty class, which conceptually represents the most
similar and hardest to distinguish pair of distributions. The
robust detector is then designed as a naive-Bayes or Neymann-
Pearson detector between the LFDs. The main difficulty in
applying the LFD-based method to our scenario is that there
is no systematic procedure to construct the LFDs and hence the
corresponding detector. As a result, in this paper, we attempt
to directly compute the optimal detector instead of seeking
LFDs.

Basar et al. [9], [10] consider the problem of transmitting
and decoding Gaussian signals over a communication channel
with unknown input from a so-called “jammer”. The unknown
input is assumed to be mean square bounded by a constant,
which depends upon the capability of the “jammer”. Although
this set-up is reasonable for analog communications where
the attacker is energy-constrained, it is not practical for cyber
attacks on digital communications, where the attacker can
change the data arbitrarily when the integrity of the sensor
is compromised.

Bayram and Gezici [11] propose a restricted Neyman-
Pearson approach for composite hypothesis-testing in the
presence of uncertainty in the prior probability distribution.
Mutapcic and Kim [12] consider the problem of detecting
two Gaussian signals, where the mean and covariance of the
signal are uncertain. They prove that the robust linear detector
design problem can be formulated as a convex optimization
problem. In [13], [14], the authors consider the problem of
detecting the presence of a signal with low Signal to Noise
Ratio (SNR). The authors prove that there exists an “SNR
wall”, below which a detector fails to be robust with respect
to the uncertainties in the fading and noise model. However,
these robustness results cannot be directly applied to the secure
detector design problem, as their uncertainty models are in
general quite different from a cyber attack model.

The rest of paper is organized as follows. In Section II we
formulate the problem of robust detection with n manipulated
measurements from m total measurements. In Section III and
IV, we consider the optimal detector design for the cases
n ≥ m/2 and n < m/2 respectively. In Section V we discuss a
special case where n = (m− 1)/2, formulate the problem of
optimal detector design and provide a closed form solution.
In Section VI we propose a heuristic detector design and
prove its asymptotic optimality. In Section VII we provide
a numerical example of i.i.d. Gaussian signals. Section VIII
finally concludes the paper.

II. PROBLEM FORMULATION

The goal is to detect a binary random variable (r.v.) θ with
distribution

θ =

{
−1 w.p. p−

+1 w.p. p+

where p−, p+ ≥ 0 and p− + p+ = 1. Without loss of
generality, we assume that p+ ≥ p−. To detect θ we have
available a vector y , [y1, . . . , ym]′ ∈ Rm of m sensor
measurements yi ∈ R, i ∈ {1, 2, ...,m}, each of which is
conditionally independent from the others given θ. Let us

assume that the probability measure generated by random
variable yi is νi when θ = −1 and µi when θ = 1. In other
words, for any Borel-measurable set S, the following holds:

νi(S) = P (yi ∈ S|θ = −1), µi(S) = P (yi ∈ S|θ = 1).

Moreover, let us define the product measure

ν , ν1 × . . .× νm, µ , µ1 × . . .× µm.

Let us define the inner measures induced by ν, µ as ν, µ
respectively. Therefore, for an arbitrary set W ⊆ Rm (not
necessarily Borel-measurable),

ν(W ) , sup{ν(S) : S ∈ B(Rm), S ⊆W},
µ(W ) , sup{µ(S) : S ∈ B(Rm), S ⊆W},

where B(Rm) is the Borel-algebra on Rm. We further assume
that measures νi and µi are absolutely continuous with respect
to each other for any 1 ≤ i ≤ m. Hence the log-likelihood
ratio Λi : R→ R of yi is well defined as

Λi(yi) , log

(
dµi
dνi

)
,

where dµi/dνi is the Radon-Nikodym derivative. Further we
define the log-likelihood ratio of y as

Λ(y) ,
∑
i

Λi(yi) = log

(
dµ

dν

)
.

We assume that an attacker wants to increase the probability
that we make an error in detecting θ. To this end, the attacker
has the ability to manipulate n of the m sensor measurements,
but we do not know which n of the m measurements have been
manipulated. Formally, this means that our estimate of θ has
to rely on a vector y′ ∈ Rm of manipulated measurements
defined by

y′ = y + γ ◦ u, (1)

where the attacker chooses the sensor-selection vector γ taking
values in

Γ , {γ ∈ Rm : γi = 0 or 1,

m∑
i=1

γi ≤ n}

and the bias vector u taking values in Rm. The ◦ in (1) denotes
entry-wise multiplication of two vectors. By selection which
entries of γ are nonzero, the attacker chooses which of the n
sensors will be manipulated. The “magnitude” of manipulation
is determined by u.

The detection problem is formalized as a minimax problem
where one wants to select an optimal detector

θ̂ = f(y′) = f(y + γ ◦ u) (2)

so as to minimize the probability of error, for the worst case
manipulation by the adversary. Following Kerckhoffs’ Princi-
ple [15] that security should not rely on the obscurity of the
system, our goal is to design the detector f : Rm → {−1, 1}
assuming that f is known to the attacker. We also take the
conservative approach that the attacker has full information
about the state of the system. Namely, the underlying θ and
all the measurements y1, . . . , ym are assumed to be known to
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the attacker. In addition the attacker can manipulate up to n
of the m sensors. We assume that the defender knows how
many sensors may be compromised, but cannot identify them.
Our goal is to analyze the problem for different values of n,
ranging from 1 to m.

Remark 1: The parameter n can be interpreted as a design
parameter for the defender. In general, increasing n will
increase the resilience of the detector under attack. However,
as is shown in the rest of the paper, a large n will result
in performance degradation during normal operation when
no sensor is compromised. Therefore, there exists a trade-off
between resilience and efficiency (under normal operation),
which can be tuned by choosing a suitable parameter n.

To compute the worst-case probability of error that we seek
to minimize, we consider given values of θ, y and an detector
f , for which an optimal policy for the attacker can be written
as follows:

(u, γ) =


arg min
u∈Rm,γ∈Γ

f(y + γ ◦ u) θ = 1

arg max
u∈Rm,γ∈Γ

f(y + γ ◦ u) θ = −1,

where the selection of the manipulation pair (u, γ) tries to get
θ̂ in (2) as low as possible when θ = 1 (ideally as low as −1)
or as high as possible when θ = −1 (ideally as high as 1).
The min and max are attainable since f only takes ±1.

Under this worst-case attacker policy, a correct decision will
be made only when the pair (θ, y) belongs to the set{

(−1, y) : y ∈ Y −(f)
}
∪
{

(+1, y) : y ∈ Y +(f)
}

(3)

where Y +(f) and Y −(f) denote the set of measurement
values y ∈ Rm for which the attacker cannot force the estimate
to be −1 and +1, respectively, i.e.,

Y +(f) ,
{
y ∈ Rm : f(y + γ ◦ u) = 1, ∀u ∈ Rm, γ ∈ Γ

}
,

Y −(f) ,
{
y ∈ Rm : f(y + γ ◦ u) = −1, ∀u ∈ Rm, γ ∈ Γ

}
.

For a given detector f , the worst-case probability of error
Pe(f) is then given by the measure of the set defined in (3)
and can be expressed as

Pe(f) , (1− β(f))P (θ = 1) + α(f)P (θ = −1)

= (1− β(f))p+ + α(f)p−, (4)

where the false alarm rate α(f) and the probability of detection
β(f) are defined as

α(f) , 1− ν(Y −(f)), β(f) , µ(Y +(f)).

One should think of α(f) as the measure of the set Rm \
Y −(f) conditioned to θ = −1 and of β(f) as the measure
of the set Y +(f) conditioned to θ = +1. The use of inner
measures ensures that Pe is well defined even if these sets are
not measurable1.

Formally, the problem under consideration is to determine
the optimal detector f in (2) that minimizes the worst-case
probability of error in (4):

P ∗e = inf
f
Pe(f).

1Even if the original function f is measurable, the sets Y + and Y − may
not be necessarily measurable.

From the discussion above, we can recognize Y +(f) and
Y −(f) as “good” sets for the detector, in the sense that
when measurements fall in these sets the attacker cannot
induce errors. From this perspective, good detection policies
obviously correspond to these sets being large. This statement
is formalized, without proof, in the following lemma:

Lemma 1: Given two functions f, g : Rm → {−1, 1}, if
Y +(g) ⊇ Y +(f) and Y −(g) ⊇ Y −(f), then Pe(g) ≤ Pe(f).

Next section will illustrate the case where half or more of
sensors are compromised.

III. OPTIMAL DETECTOR DESIGN FOR n ≥ m/2
In this section we consider the case when half or more

of the measurements can be manipulated by the attacker. We
show that, in this case, the attacker can render the information
provided by the manipulated measurement vector y useless,
forcing the optimal estimate to be determined exclusively from
the a-priori distribution of θ.

Theorem 1: If n ≥ m/2 then an optimal f∗ is given by2

f∗(y) = 1, ∀y ∈ Rm,

and the corresponding probability of error Pe and sets Y + and
Y − are given by

Pe(f∗) = p−, Y +(f∗) = Rm, Y −(f∗) = ∅.

The following lemma characterizes the relationship between
Y −(f) and Y +(f) when n ≥ m/2 and provides a key
technical result needed to prove Theorem 1.

Lemma 2: If n ≥ m/2, then Y −(f) 6= ∅ implies that
Y +(f) = ∅.

Proof of Lemma 2: First note that in this case m−n ≤ n.
Assuming by contradiction that neither Y +(f) nor Y −(f) is
empty. As a result, there exist two measurement vectors

y+ = [y+
1 , . . . , y

+
m]′ ∈ Y +(f),

y− = [y−1 , . . . , y
−
m]′ ∈ Y −(f).

Now let us construct another vector

y = [y+
1 , . . . , y

+
n , y

−
n+1, . . . , y

−
m]′.

Thus,
y = y+ + γ1 ◦ (y− − y+),

where
γ1 = [0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . , 1︸ ︷︷ ︸
m−n

]′.

Since γ1 has m−n ≤ n nonzero entries (recall that n ≥ m/2),
this vector belongs to Γ. From the facts that y+ ∈ Y +(f)
and γ1 ∈ Γ, we conclude from the definition of Y +(f) that
f(y) = 1. On the other hand,

y = y− + γ2 ◦ (y+ − y−),

where
γ2 = [1, . . . , 1︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
m−n

]′.

2The optimal detector is not necessarily unique.
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Since γ2 has n nonzero entries, this vector also belongs to
Γ. From the facts that y− ∈ Y −(f) and γ2 ∈ Γ, we can also
conclude from the definition of Y −(f) that f(y) = −1, which
contradicts our previous assertion about f(y).

Proof of Theorem 1: By Lemma 2, we know that either
Y +(f) or Y −(f) must be empty. First suppose that Y −(f) is
empty and hence α(f) = 1. As a result

Pe(f) = p+(1− β(f)) + p−.

The minimum is achieved when Y +(f) = Rm, which implies
that f = 1 and Pe(f) = p−.
On the other hand, if Y +(f) is empty, then the optimal
Y −(f) = Rm, f = −1 and Pe(f) = p+. Since we assume
that p+ ≥ p−, the optimal f is f∗ = 1 and optimal sets are
Y +(f∗) = Rm and Y −(f∗) = ∅.

IV. OPTIMAL DETECTOR DESIGN FOR n < m/2

We now consider the case when less than half of the
measurements can be manipulated by the attacker, i.e., n <
m/2. We show that the optimal detector is a threshold rule
based on a Hamming-like distance between the (manipulated)
measurement vector and two appropriately defined sets.

By Lemma 1, to find the optimal f∗, we should maximize
the “volume” of both Y −(f) and Y +(f). However, it is easy
to see that there is a trade-off between Y −(f) and Y +(f). In
other words, expanding one set usually results in shrinking the
other set. To characterize the exact trade-off between Y −(f)
and Y +(f), we need to introduce the following notation: We
denote by d : Rm × Rm → N0 the metric induced by the
“zero-norm,” i.e.,

d(x, y) , ‖x− y‖0,

where ‖x‖0 is the “zero-norm” of x, which is defined as the
number of non-zero entries of the vector x. While the “zero-
norm” is not a norm, it is easy to verify that the function
d defined above is a metric. In fact, d can be viewed as
an extension of the Hamming distance to continuous-valued
vectors. The metric d can be generalized to sets in the usual
way: given an element x and two subsets X,Y of Rm, we
define

d(X,Y ) , min
x∈X, y∈Y

d(x, y) d(x, Y ) , d({x}, Y ). (5)

For convenience, we define the distance from any set to the
empty set to be infinity: d(X, ∅) = ∞. The minimum in (5)
is always attainable since d takes only integer values.

We also need to introduce a “truncation function”: Given an
indexed subset I = {i1, i2, . . . , ij} of {1, 2, ...,m}, we define
the function TruncI : Rm → R|I| by

TruncI(y) =
[
yi1 yi2 · · · yij

]′
.

For a given set X ⊂ Rm and I ⊂ {1, . . . ,m}. We can
identify the truncated set XI as

XI = {y ∈ R|I| : ∃ x ∈ X, such that y = TruncI(x)}.

On the contrary, suppose that for each indexed subset I ⊂
{1, . . . ,m} of size m − 2n we have available a set XI ⊆
Rm−2n. We want to find the set X ⊆ Rm such that X is the

inverse image of XI under TruncI , for each I. It is easy to
see that X can be defined in the following way:

X , {y ∈ Rm : TruncI(y) ∈ XI ,∀|I| = m− 2n}. (6)

We define the class of such a set X parameterized by XIs as
Xm,n.

Definition 1: Two sets X+, X− ∈ Xm,n are called mutu-
ally exclusive if and only if

X+ , {y ∈ Rm : TruncI(y) ∈ XI ,∀|I| = m− 2n},
X− , {y ∈ Rm : TruncI(y) ∈ Rm−2n\XI ,∀|I| = m− 2n},

for some XIs.
Example: Let m = 3 and n = 1, then the following two

sets are mutually exclusive:

X+ = {y ∈ R3 : yi > 0,∀i = 1, 2, 3},
X− = {y ∈ R3 : yi ≤ 0,∀i = 1, 2, 3},

with X{i} = R+. Furthermore, it is worth noticing that the
union of set X+ and X− is not the entire space in general.

It turns out to be that the concept of mutually exclusive sets
provides the exact characterization of the trade-off between
Y −(f) and Y +(f), which is illustrated by the following
theorems:

Theorem 2: For any detector f , there exists a pair of
mutually exclusive sets Y−(f), Y+(f) ∈ Xm,n, such that

Y −(f) ⊆ Y−(f), Y +(f) ⊆ Y+(f). (7)

Theorem 3: For any pair of mutually exclusive sets
X−, X+ ∈ Xm,n, there exists a detector f , defined as

f(y) =

{
1 d(y,X−) ≥ d(y,X+)

−1 d(y,X−) < d(y,X+),
(8)

for which the following inequalities hold:

X+ ⊆ Y +(f), X− ⊆ Y −(f). (9)

Combining Theorem 2 and Theorem 3, we have the following
corollary, which casts the design of the optimal detector as an
optimization problem over pairs of mutually exclusive sets:

Corollary 1: An optimal detector f∗ is of the following
form:

f(y) =

{
1 d(y,X−∗ ) ≥ d(y,X+

∗ )

−1 d(y,X−∗ ) < d(y,X+
∗ ),

(10)

where X+
∗ and X−∗ are the solutions of the following opti-

mization problem:

minimize
X+,X−

(1− µ(X+))p+ + (1− ν(X−))p−

subject to X+, X− ∈ Xm,n, (11)

X+, X− are mutually exclusive.

Proof: Suppose that X+
∗ and X−∗ are the optimal solu-

tions. By Theorem 3, we know that

Pe(f∗) = (1− µ(Y +(f∗)))p
+ + (1− ν(Y −(f∗)))p

−

≤ (1− µ(X+
∗ ))p+ + (1− ν(X−∗ ))p−.
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Now pick an arbitrary detector f . By Theorem 2, there exists
a pair of mutually exclusive sets Y+(f) and Y−(f) such that

Pe(f) = (1− µ(Y +(f)))p+ + (1− ν(Y −(f)))p−

≥ (1− µ(Y+(f)))p+ + (1− ν(Y−(f)))p−.

Since X+
∗ and X−∗ are the optimal solutions for (11), we have

(1− µ(Y+(f)))p+ + (1− ν(Y−(f)))p−

≥ (1− µ(X+
∗ ))p+ + (1− ν(X−∗ ))p−,

which concludes the proof.
Remark 2: The key challenge in directly applying Corol-

lary 1 is that it does not provide a method to construct the sets
X+, X− that lead to the optimal f∗, potentially requiring one
to search for the optimal detector by ranging over all possible
pairs of mutually exclusive sets in Xm,n. In general this result
does not yield a computationally viable way to compute the
optimal detector, excluding a special case, which is discussed
in Section V. Furthermore, even if we could find the optimal
X+
∗ , X

−
∗ , it is possible that d(y,X+

∗ ) and d(y,X−∗ ) could be
numerically unstable and expensive to compute.

However, Corollary 1 provides a general guideline for
designing detector in adversarial environments, as it effectively
reduces the search space of optimal f from all possible
functions to the functions of the special form (10). In fact
we shall see in Section V that we can use this general result
to find the optimal detector for the case m = 2n + 1,
as the computation of the sets X+, X− becomes trivial. In
Section VI, we propose the design of a heuristic detector of
form (10) for the general case and prove that our design is
asymptotically optimal when n is fixed and m goes to infinity.
Both of these detectors can be efficiently computed.

The remainder of this section is mostly devoted to the proof
of Theorem 2 and 3.

A. Proof of Theorem 2

For a given set I and detector f , in the sequel we denote
by Y −I (f) and Y +

I (f) the image of Y −(f) and Y +(f),
respectively, under the function TruncI . As stated in the
following result, it turns out that these sets are always disjoint:

Lemma 3: if n < m/2, for every detector f and index
subset I of cardinality |I| = m− 2n, we have

Y −I (f)
⋂
Y +
I (f) = ∅.

Proof of Lemma 3: We prove the statement by con-
tradiction. Without loss of generality, we assume that I =
{1, . . . ,m− 2n}, and

Y −I
⋂
Y +
I 6= ∅.

As a result, there exist two vectors

y+ = [y1, . . . , ym−2n, y
+
m−2n+1, . . . , y

+
m]′ ∈ Y +,

y− = [y1, . . . , ym−2n, y
−
m−2n+1, . . . , y

−
m]′ ∈ Y −.

Now let us construct another vector

y = [y1, . . . , ym−2n, y
+
m−2n+1 . . . , y

+
m−n, y

−
m−n+1, . . . , y

−
m]′.

It can be easily seen that there at most are n elements in y
that differ from y+ ∈ Y +. As a result, f(y) = 1 from the
definition of Y +. However, there are also at most n elements
in y that differ from y− ∈ Y − which implies that f(y) = −1
from the definition of Y −, leading to a contradiction.
Now we are ready to prove Theorem 2:

Proof of Theorem 2: For every detector f , it is easy to
see that

Y −(f) ⊆ Y−(f)

, {y ∈ Rm : TruncI(y) ∈ Y −I (f),∀|I| = m− 2n},

By Lemma 3,
Y +
I (f)

⋂
Y −I (f) = ∅,

which implies that Y +
I (f) ⊆ Rm−2n\Y −I (f) and therefore,

Y +(f) is upper bounded by

Y +(f) ⊆ Y+(f)

, {y ∈ Rm : TruncI(y) ∈ Rm−2n\Y −I (f),∀|I| = m− 2n}.

Therefore, Y−(f),Y+(f) ∈ Xm,n are mutually exclusive.

B. Proof of Theorem 3

First let us prove an important inequality on the distance
between any pair of mutually exclusive sets:

Lemma 4: For any pair of mutually exclusive sets
X−, X+ ∈ Xm,n,

d(X−, X+) ≥ 2n+ 1.

Proof of Lemma 4: Without loss of generality, we assume
that X− and X+ are not empty. By contradiction, assume that
there exist y− ∈ X−, y+ ∈ X+ for which d(y−, y+) ≤ 2n,
which implies that y− and y+ share at least m−2n equal ele-
ments. As a result, there exists I = {i1, . . . , im−2n}, such that
y−i = y+

i , ∀i ∈ I. Therefore, TruncI(y−) = TruncI(y+).
Thus,

TruncI(X−)
⋂

TruncI(X+) 6= ∅,

which contradicts with the fact that

TruncI(X−) ⊆ XI , TruncI(X+) ⊆ Rm−2n\XI .

The following lemma characterizes the distance between an
arbitrary vector y and the sets X− and X+.

Lemma 5: For any pair of mutually exclusive sets
X−, X+ ∈ Xm,n and any vector y ∈ Rm,

d(y,X−) + d(y,X+) ≥ 2n+ 1.

Proof of Lemma 5: Without loss of generality, we assume
that X− and X+ are not empty. Since the minimum in (5) is
attainable, there exist y− ∈ X− and y+ ∈ X+, such that

d(y,X−) = d(y, y−), d(y,X+) = d(y, y+).

By Lemma 4,

d(y−, y+) ≥ d(X−, X+) ≥ 2n+ 1,
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and therefore, using the triangle inequality, we conclude that

d(y,X−) + d(y,X+) = d(y, y−) + d(y, y+)

≥ d(y−, y+) ≥ 2n+ 1.

We are now ready to prove Theorem 3:
Proof of Theorem 3: We first prove that

X− ⊆ Y −(f).

Consider an arbitrary vector y ∈ X−. To show that y ∈
Y −(f), we need to prove that f(y + γ ◦ u) = −1, ∀u ∈
Rm, γ ∈ Γ. Since y ∈ X−,

d(y + γ ◦ u,X−) ≤ d(y + γ ◦ u, y) = ‖γ ◦ u‖0 ≤ n,

and therefore, because of Lemma 5, we must have that

d(y + γ ◦ u,X+) ≥ 2n+ 1− d(y + γ ◦ u,X−) ≥ n+ 1.

Consequently d(y + γ ◦ u,X−) < d(y + γ ◦ u,X+) and we
indeed have that f(y + γ ◦ u) = −1. The proof that X+ ⊆
Y +(f) follows similar steps.

V. OPTIMAL DETECTOR FOR n = (m− 1)/2

In this section, we construct the optimal detector for the
case where n = (m − 1)/2. From Corollary 1, we know
that the optimal detector can be constructed by choosing
an ‘appropriate” family of sets XI . It turns out that when
n = (m − 1)/2 this family of sets has a particularly simple
structure.

Theorem 4: If m − 2n = 1, the family of sets X{i} that
gives the optimal detector f∗ in (10) is of the form

X{i} = Ti(ηi), ∀i ∈ {1, 2, ...,m} (12)

where ηi ∈ R,

Ti(ηi) ,
{
yi ∈ R : Λi(yi) < ηi

}
,

where Λi : R→ R is the log-likelihood ratio of the distribution
of the ith measurement yi. By convention, Ti(∞) = R and
Ti(−∞) = ∅3.

Before proving Theorem 4, we note that one can imple-
ment the optimal detector in (10) without actually computing
d(y,X−) and d(y,X+). When either X+ or X− is empty,
then one of the distances in (10) is +∞ and f∗ is simply a
constant. When none of these sets is empty, it is straightfor-
ward to show that

d(y,X−) =
∣∣{i : yi ∈ X{i}}

∣∣, d(y,X+) =
∣∣{i : yi /∈ X{i}}

∣∣,
where | · | is the number of elements in a set. The detection
algorithm can be implemented as the following voting process:
• The detector computes m individual estimates θ̂i by a

Neymann-Pearson detector based on individual (possibly
manipulated) measurements y′i:

θ̂i ,

{
−1 Λi(y

′
i) < ηi

1 Λi(y
′
i) ≥ ηi

.

3The threshold ηi is not the threshold for Bayesian detector based on yi
in general, as illustrated in Section VII.

• The optimal estimate θ̂ is obtained by voting:

θ̂ =

{
−1 at least n+ 1 sensors estimate θ̂i = −1

+1 less than n+ 1 sensors estimate θ̂i = −1

A. Proof of Theorem 4

We start by noting that when m− 2n = 1 the sets X− and
X+ are especially simple to compute:

X− =
{
y ∈ Rm : Trunci(y) ∈ X{i},∀i

}
=

m∏
i=1

X{i}

X+ =
{
y ∈ Rm : Trunci(y) ∈ R\X{i},∀i

}
=

m∏
i=1

R\X{i},

where
∏
iX{i} is the Cartesian product. The following result

is a straightforward consequence of the fact that X− and X+

can be written as Cartesian products:
Lemma 6: If X+ 6= ∅ and X− 6= ∅, then Trunci(X

−) =
X{i} and Trunci(X

+) = R\X{i}.
The following result essentially states that the inner measure
of Cartesian products is the product of inner measure of each
set, which is trivial for measurable sets. The detail of the proof
is reported in the appendix for the sake of legibility.

Lemma 7: Let

αi = 1− sup{νi(S) : S ∈ B(R), S ⊆ X{i}},
βi = sup{µi(S) : S ∈ B(R), S ⊆ R\X{i}}.

If X− and X+ are both not empty, then the following holds:

α(f) = 1−
m∏
i=1

(1− αi), β(f) =

m∏
i=1

βi.

We are now ready to prove Theorem 4 by leveraging the
independence of yi.

Proof of Theorem 4: It is easy to see that if X+ (X−)
is empty, then f = −1 (f = 1), which implies that X{i} =
Ti(∞) (X{i} = Ti(−∞)). Now assume that X+ and X− are
not empty, by Lemma 7,

Pe(f) = 1− p+
m∏
i=1

βi − p−
m∏
i=1

(1− αi).

Suppose the optimal αi, βi are α∗i , β
∗
i . As a result, we know

that

P ∗e = 1−

p+
∏
j 6=1

β∗j

β∗1 −
p−∏

j 6=1

(1− α∗j )

 (1− α∗1)

= a∗1α
∗
1 − b∗1β∗1 + c∗1,

where

a∗1 =

p−∏
j 6=1

(1− α∗j )

 , b∗1 =

p+
∏
j 6=1

β∗j

 , c∗1 = 1− a∗1.

By the Bayes Risk Criterion [16], we could change X{1} to
the form (12), with η1 = log(a∗1/b

∗
1), without increasing the

probability of error. Similarly, we can sequentially change
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X{2}, . . . , X{m} to the form (12) without increasing the
probability of error, which concludes the proof.

Remark 3: It is clear that βi and αi are functions of ηi,
when X{i} is of the form (12). Due to Corollary 1, we know
that

P ∗ = min
ηi

1− p+
m∏
i=1

βi − p−
m∏
i=1

(1− αi), (13)

which can be solved numerically. Therefore, we effectively
reduce the search space from all pairs of mutually exclusive
sets in Xm,n to a m-dimensional vector of thresholds.

VI. A HEURISTIC DETECTOR FOR GENERAL n

In this section we propose a heuristic detector, where we
design the set XI as

XI = {y ∈ Rm−2n :
∑
i∈I

Λi(yi) < η},

where η = log(p−/p+). It is easy to see that in that case, X−

and X+ are given by:

X− = {y ∈ Rm :
∑
i∈I

Λi(yi) < η,∀|I| = m− 2n}, (14)

and

X+ = {y ∈ Rm :
∑
i∈I

Λi(yi) ≥ η,∀|I| = m− 2n}. (15)

We show that the corresponding f has a simple structure, if
the following assumption is satisfied:

(H1) infyi Λi(yi) = −∞, supyi Λi(yi) =∞.
Moreover, we prove that such detector is asymptotically

optimal for i.i.d. measurements when n is fixed and m→∞.
Remark 4: (H1) is satisfied when yis are Gaussian random

variables with different means under each hypothesis but with
the same variance.
Let us first arrange yis as yi1 , . . . , yim , such that

Λi1(yi1) ≥ Λi2(yi2) ≥ . . . ≥ Λim(yim).

Also define the index set

Ik(y) = {ik, . . . , ik+m−2n−1}, k = 1, . . . , 2n+ 1.

It is easy to check that |Ik(y)| = m− 2n. Now let us define
function hk(y) as

hk(y) ,

{
−1

∑
i∈Ik(y) Λi(yi) < η

1
∑
i∈Ik(y) Λi(yi) ≥ η.

(16)

The following theorem claims that the heuristic detector has
the following form:

Theorem 5: Consider a heuristic detector f0, such that

f0(y) =

{
1 d(y,X−) ≥ d(y,X+)

−1 d(y,X−) < d(y,X+),
(17)

with

X− = {y ∈ Rm :
∑
i∈I

Λ(yi) < η,∀|I| = m− 2n},

and

X+ = {y ∈ Rm :
∑
i∈I

Λ(yi) ≥ η,∀|I| = m− 2n}.

If assumption (H1) is satisfied, then the heuristic detector can
be computed as

f0(y) = hn+1(y).

The proof of Theorem 5 is quite technical and hence is
reported in the appendix for the sake of legibility. We would
like to remark that the function

∑
i∈In+1(y) Λi(yi) is the

truncated sum of log-likelihood ratio since it is the sum of
m− 2n log-likelihood ratios whose values are in the middle.
As a result, hn+1(y) can be computed very efficiently by the
following procedures:
• The detector sorts all the log-likelihood ratio Λi(yi) of

individual measurements in descending order.
• The detector throws away n measurements with the

largest Λi(yi)s and n measurements with the smallest
Λi(yi)s.

• The detector sums the remaining m − 2n Λi(yi)s and
compares it to η. The detector chooses θ̂ = −1 if
the truncated sum is less than η, otherwise the detector
chooses θ̂ = 1.

The complexity of such detector is O(mlog(m)), which is the
complexity for sorting the likelihood ratio.

A. Asymptotic Optimality

In this subsection, we prove that the heuristic detector
f0 is asymptotically optimal. Throughout this subsection, we
assume that the measurements yi are identically distributed.
However, we do not require that assumption (H1) holds. Let
us define αm,n and βm,n as the probability of false alarm and
detection of detector f0 defined in (17) with m sensors and
n < m/2 corrupted measurements.

Moreover we define

P (m,n) , p+(1− βm,n) + p−αm,n,

and P ∗(m,n) as the probability error of the optimal detector
with m sensors and n corrupted measurements. Since when
n = 0, i.e. no measurement is corrupted, f0 is the optimal
detector by the Bayes rule, we have the following lemma:

Lemma 8: P (m,n) ≥ P ∗(m,n) ≥ P ∗(m, 0) = P (m, 0).
Let us define the rate function as

In , lim sup
m→∞

− log(P (m,n))

m
, In , lim inf

m→∞

− log(P (m,n))

m
.

Moreover let us define In , In when In = In. Similarly one
can define the rate function of the optimal detector.

Remark 5: If In exists, then from definition

e(−In−δ)m ≤ P (m,n) ≤ e(−In+δ)m,

for arbitrary small δ and sufficiently large m. As a result,
P (m,n) converges to 0 as “fast” as the exponential function
e−Inm. Therefore, larger In indicates better asymptotic per-
formance. Moreover, if In = I∗n, then the probability of error
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for the heuristic detector converges to 0 as “fast” as that of
the optimal detector.
It is well known that I0 exists, which is formalized by the
following lemma [17]:

Lemma 9 (Chernoff Lemma): The optimal decay rate for
n = 0 is given by

I0 = inf
0<t<1

log
[
E
(
etΛ(y)|θ = −1

)]
.

The following theorem proves that the heuristic detector
decays as “fast” as the optimal detector:

Theorem 6: In and I∗n exist. Moreover, the following equal-
ity holds:

In = I∗n = I0. (18)

Proof: Due to Lemma 8, we know that In ≤ I
∗
n ≤ I0.

As a result, we only need to prove that In ≥ I0. From the
definition of αm,n and the fact that X− ⊆ Y −(f0)4,

αm,n ≤ ν(Rm\X−).

Now by the definition of X−, we know that

ν(Rm\X−) = ν(
⋃

|I|=m−2n

{y ∈ Rm :
∑
i∈I

Λi(yi) ≥ η})

≤
∑

|I|=m−2n

ν({y ∈ Rm :
∑
i∈I

Λi(yi) ≥ η}).

Since yis are i.i.d. distributed, we know that

αm,n ≤
(

m
m− 2n

)
ν({y ∈ Rm :

m−2n∑
i=1

Λi(yi) ≥ η})

≤ m2nαm−2n,0

Similarly, one can prove that

1− βm,n ≤ m2n(1− βm−2n,0).

Therefore,

P (m,n) = p−αm,n + p+(1− βm,n) ≤ m2nP (m− 2n, 0),

which implies that

In = lim inf
m→∞

− log(P (m,n))

m

≥ − lim sup
m→∞

2n log(m)

m
+ lim inf

m→∞

− log(P (m− 2n, 0))

m

= 0 + lim inf
m→∞

− log(P (m− 2n, 0))

m− 2n
× m− 2n

m
= I0.

As a result, In = I∗n = I0.
Remark 6: Theorem 6 claims that the heuristic detector f0

achieves the same convergence rate as the optimal detector f∗.
As a result, if m � n, which means a small percentage of
the measurements are corrupted, then the heuristic detector is
a good approximation of the optimal detector and should be
used due to its low computational complexity.
Table I summarizes the discussion on the optimal detector until
this point .

4We use the fact that X− and X+ defined in (14),(15) are measurable.

VII. I.I.D. GAUSSIAN CASE

We now specialize our results for i.i.d. Gaussian measure-
ment yi. In particular, we assume that

yi = aθ + vi,

where a > 0 is constant and vis denote i.i.d. Gaussian
variables. Without loss of generality, we assume that vis have
zero mean and unit variance.

A. Optimal Detector for n = (m− 1)/2

We first consider the case where m− 2n = 1. It is easy to
prove that X{i}s in Theorem 4 are of the form

X{i} = T (ηi) = {yi ∈ R : yi < ζi}, (19)

with ζi = ηi/2a. Moreover, the following results use sym-
metry to provide an even tighter characterization of the sets
corresponding to the optimal detector.

Theorem 7: In the case of i.i.d. Gaussian measurements and
m − 2n = 1, the optimal worst-case probability of error is
given by

P ∗e = 1− sup
ζ

(
p+ [Q(ζ − a)]

m
+ p− [Q(−ζ − a)]

m)
,

(20)

where
Q(x) ,

1√
2π

∫ ∞
x

e−
u2

2 du.

Moreover, the X{i}s of the optimal detector f∗ in (10) are
symmetric and of the form

X{i} = {yi ∈ R : yi < ζ}, ∀i ∈ {1, 2, ...,m} (21)

for any ζ ∈ R ∪ {−∞,+∞} that achieves the supremum in
(20).

Remark 7: The main difference between Theorem 7 and 4
is that all the individual thresholds in Theorem 7 are essentially
the same, which reduces the search space further from Rm to
R.
Before proving Theorem 7, we need the following lemma,
which characterizes one important property of Q:

Lemma 10: Q satisfies the following inequality:

Q(x)Q(y) ≤
[
Q

(
x+ y

2

)]2

. (22)

Moreover, the equality holds only when x = y.
Proof: It is easy to see that (22) holds if log(Q(x)) is

strictly concave. Consider the second derivative of log(Q(x)),
we have

d2

dx2
log(Q(x)) =

Q(x)Q′′(x)−Q′(x)Q′(x)

Q2(x)
.

Therefore, we only need to prove that

Q(x)Q′′(x)−Q′(x)Q′(x) < 0, ∀x

It is easy to derive that

Q′(x) = − 1√
2π
e−x

2/2, Q′′(x) =
1√
2π
xe−x

2/2.
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m,n Detection algorithm Optimality
n ≥ m/2 Choose the hypothesis with larger prior probability Optimal

n = (m− 1)/2 Compute m estimates θi based on yi by N-P detectors, then vote Optimal
n� m Compare the truncated sum of log-likelihood ratio to threshold η Asymptotically optimal
n = 0 Perform Naive Bayes detection Optimal

TABLE I
THE OPTIMAL AND HEURISTIC DETECTORS FOR DIFFERENT m,n

Thus,

Q(x)Q′′(x)−Q′(x)Q′(x)

=
1

2π
e−x

2/2

(∫ ∞
x

xe−u
2/2du− e−x

2/2

)
<

1

2π
e−x

2/2

(∫ ∞
x

ue−u
2/2du− e−x

2/2

)
=

1

2π
e−x

2/2
(
e−x

2/2 − e−x
2/2
)

= 0.

As a result, log(Q(x)) is strictly concave, which concludes
the proof.

Proof of Theorem 7: From the definition of Q function,
it is trivial to see that

αi = Q(ζi + a), βi = Q(ζi − a).

Therefore,

Pe(f) = 1− p+
m∏
i=1

Q(ζi − a)− p−
m∏
i=1

(1−Q(ζi + a))

= 1− p+
m∏
i=1

Q(ζi − a)− p−
m∏
i=1

Q(−ζi − a). (23)

Let us denote by ζ∗i the constant ζi in (19) that corresponds
to the optimal detector f∗.
If either X− or X+ is empty, then ζ∗i = −∞ or ζ∗i = ∞
and the proof is trivial . As a result, we assume that X− and
X+ are non-empty. By contradiction assume that ζ∗1 6= ζ∗2 . By
Lemma 10, we know that

m∏
i=1

Q(ζ∗i − a) < Q2

(
ζ∗1 + ζ∗2

2
− a
) m∏
i=3

Q(ζ∗i − a),

m∏
i=1

Q(−ζ∗i − a) < Q2

(
−ζ
∗
1 + ζ∗2

2
− a
) m∏
i=3

Q(−ζ∗i − a).

Therefore, the following thresholds (ζ∗1 + ζ∗2 )/2, (ζ∗1 +
ζ∗2 )/2, ζ3, . . . , ζm are strictly better than ζ∗1 , ζ

∗
2 , . . . , ζ

∗
m, which

contradicts the optimality of f∗. We thus conclude that all the
ζ∗i must be equal since the same argument could have been
made for any pair of ζ∗i ’s, which proves (21). The result then
follows from this and (23) .
In Figure VII-A we plot the probability of error versus the
threshold ζ for different pairs of m,n. The parameters are
chosen as follows:

p+ = 0.6, p− = 0.4, a = 1.

The optimum for m = 1, n = 0 is the pair ζ = −0.202, Pe =
0.154. The optimum for m = 3, n = 1 is ζ = −0.508, Pe =
0.380. For the case m = 5, n = 2, the optimal ζ is actually
−∞. Therefore, the optimal detector is simply f∗ = 1.

5 10 15 20

10−5

10−3

10−1

m

Pe

f = 1
n = 0
n = 1
n = 2
n = 3

Fig. 2. Probability of Error v.s. Number of Sensors (m). The horizontal line
corresponds to the probability of error of the constant detector f = 1. The
green line corresponds to the probability of error of the heuristic detector f0
when n = 0. The red line corresponds to Pe(f0) when n = 1. The black line
corresponds to Pe(f0) when n = 2. The blue line corresponds to Pe(f0)
when n = 3.

B. Heuristic Detector for General n < m/2

We assume that p+ = p− = 0.5 and a = 1. Figure 2
shows the probability of error P (m,n) versus m for the
heuristic detector proposed in Section VI and a constant
detector f = 1. The P (m,n) is computed as the empirical
probability by averaging 108 random experiments. It can be
seen when n is close to m/2, the heuristic detector is worse
than constant detector, which shows that the heuristic detector
is not necessarily optimal. However, as m goes to infinity.
P (m,n) decays as “fast” as P (m, 0), which illustrates that
the heuristic detector is asymptotically optimal.

VIII. CONCLUSION

In this paper we consider the problem of designing detectors
able to minimize the probability of error with n corrupted
measurements due to integrity attacks on a subset of the
sensor pool. The problem is posed as a minimax optimization
where the goal is to design the optimal detector against all
possible attacker’s strategies. We show that if the attacker can
manipulate at least half of the m measurements (n ≥ m/2)
then the optimal worst-case detector should ignore all m
measurements and be based solely on the a-priori information.
When the attacker can manipulate less than of half of the
measurements (n < m/2), we show that the optimal detector
is a threshold rule based on a Hamming-like distance between
the manipulated measurement vector and two appropriately
defined sets. For a particular case (m = 2n + 1) we were
able to compute the optimal detector, showing that it consists
of a simple voting scheme. A heuristic detector, which is
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(a) m = 1, n = 0
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(b) m = 3, n = 1

−4 −2 0 2 4

0.2

0.4

0.6

ζ

Pe

(c) m = 5, n = 2

Fig. 1. Probability of Error v.s. threshold ζ

asymptotically optimal when m→∞, is proposed for general
n < m/2. We further apply the results to i.i.d. Gaussian case.

IX. APPENDIX

A. Proof of Lemma 7

Before proving Lemma 7, we first prove a preliminary
lemma on the relationship between X+, X− and the corre-
sponding Y +(f), Y −(f):

Lemma 11: Let X−, X+ ∈ Xm,n be mutually exclusive
sets generated as follows

X− = {y ∈ Rm : TruncI(y) ∈ XI ,∀|I| = m− 2n},
X+ = {y ∈ Rm : TruncI(y) ∈ Rm−2n\XI ,∀|I| = m− 2n}.

If the following holds for all |I| = m− 2n:

TruncI(X−) = XI , TruncI(X+) = Rm−2n\XI ,

then X− = Y −(f), X+ = Y +(f), where f is defined in
(10).

Proof: By Theorem 3, we know that

X+ ⊆ Y +(f), X− ⊆ Y −(f).

Consider TruncI(Y −(f)) with |I| = m− 2n, we know that

XI = TruncI(X−) ⊆ TruncI(Y −(f)).

By Theorem 3, we have

TruncI(Y +(f)) ⊆ Rm−2n\XI . (24)

Since equation (24) is true for every |I| = m − 2n, we
know that Y +(f) ⊆ X+, which implies that Y +(f) = X+.
Similarly we can prove that Y −(f) = X−.

Proof of Lemma 7: We only prove that β =
∏m
i=1 βi.

The other equality follows the same argument. Since X− and
X+ are not empty, by Lemma 11 and Lemma 6, we know
that X− = Y −(f) and X+ = Y +(f). Therefore

β = sup{µ(Q) : Q ⊆ X+, Q ∈ B(Rm)}.

Consider Qi ⊆ R\Xi and Qi ∈ B(R). It is trivial to see that
m∏
i=1

Qi ⊆
m∏
i=1

R\Xi = X+.

Hence,

β ≥ µ(

m∏
i=1

Qi) =

m∏
i=1

µi(Qi).

Taking the supremum on the right hand side over all measur-
able Qi ⊆ R\Xi, we have

β ≥
m∏
i=1

βi.

On the other hand, suppose that Q ⊆ X+ and Q ∈ B(Rm).
Therefore

Trunc{i}(Q) ⊆ Trunc{i}(X
+) = Xi.

Let us write Trunc{i}(Q) as Qi. It can be proved that Qi is
universally measurable. In other words, there exist measurable
sets Qi and Q

i
, such that

Q
i
⊆ Qi ⊆ Qi, µi(Qi) = µi(Qi).

As a result,

µ(Q) ≤ µ(

m∏
i=1

Qi) =

m∏
i=1

µi(Qi) =

m∏
i=1

µi(Qi) ≤
m∏
i=1

βi.

The last inequality holds since Q
i
⊆ Qi ⊆ Xi. Take the

supremum on the left side, we have

β ≤
m∏
i=1

βi,

which concludes the proof.

B. Proof of Theorem 5

Before proving Theorem 5, let us define

n−(y) ,
2n+1∑
k=1

Ihk(y)=1, n
+(y) ,

2n+1∑
k=1

Ihk(y)=−1,

where I is the indicator function. We have the following
lemma:

Lemma 12: n−(y) + n+(y) = 2n+ 1, n−(y) = d(y,X−),
n+(y) = d(y,X+).

Proof: Without loss of generality, let us assume that

Λ1(y1) ≥ Λ2(y2) ≥ . . . ≥ Λm(ym).

It is trivial to prove that n−(y) + n+(y) = 2n+ 1. To prove
n−(y) = d(y,X−), we first show that n−(y) ≥ d−(y,X−).
Let

M = (m− 2n− 1) max
i
|Λi(yi)|+ η.
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Consider another vector y− ∈ Rm. If i ≤ n−(y), then we
choose y−i such that

Λi(y
−
i ) < −M, i = 1, . . . , n−(y),

and
Λi(y

−
i ) ≤ Λi−1(y−i−1), i = 2, . . . , n−(y),

which is always possible due to assumption (H1). If i >
n−(y), we choose y−i = yi. It is easy to see that d(y−, y) =
n−(y). As a result, we only need to prove that y− ∈ X−.
From the construction of y−,

Λn−(y)+1(y−n−(y)+1) ≥ . . . ≥ Λm(y−m)

≥ Λ1(y−1 ) ≥ . . .Λn−(y)(y
−
n−(y)).

(25)

Since

X− = {y ∈ Rm :
∑
i∈I

Λ(yi) < η,∀|I| = m− 2n}.

We know that y− ∈ X− if the sum of the largest m−2n terms
in (25) is less than η. First suppose that n−(y) < 2n+1, which
implies that n−(y) +m− 2n ≤ m. Therefore

m−2n∑
i=1

Λ(y−n−(y)+i) =

m−2n∑
i=1

Λ(yn−(y)+i).

From the definition of n−(y) and monotonicity of
hk(y)5, we know that h1(y), . . . , hn−(y)(y) = 1 and
hn−(y)+1, . . . , h2n+1(y) = −1. Since,

hn−(y)+1(y) =

{
−1

∑m−2n
i=1 Λ(y−n−(y)+i) < η

1
∑m−2n
i=1 Λ(y−n−(y)+i) ≥ η.

we know that
m−2n∑
i=1

Λ(y−n−(y)+i)− η < 0,

which implies that y− ∈ X−. Now suppose that n−(y) =
2n+ 1. It can be proved that

m∑
i=m−2n+2

Λ(y−i ) + Λ(y−1 ) =

m∑
i=m−2n+2

Λ(yi) + Λ(y−1 )

< (m− 2n− 1) max
i
|Λ(yi)| −M ≤ η,

which implies that y− ∈ X−. Hence, n−(y) ≥ d(y,X−).
Similarly one can prove that n+(y) ≥ d(y,X+). By Lemma 5,
we have

n−(y) + n+(y) = 2n+ 1 ≤ d(y,X−) + d(y,X+),

n−(y) ≥ d(y,X−), n+(y) ≥ d(y,X−).

Therefore, n−(y) = d(y,X−), n+(y) = d(y,X+).
Now we are ready to prove Theorem 5:

Proof of Theorem 5: By Lemma 12,

f0(y) =

{
1 n−(y) ≥ n+(y)

−1 n−(y) < n+(y).

5hk(y) is monotonically decreasing.

Since n−(y) + n+(y) = 2n+ 1, we know that

f0(y) =

{
1 n−(y) ≥ n+ 1

−1 n−(y) < n.

Due to monotonicity of hk(y), n−(y) ≥ n+ 1 if and only if
hn+1(y) = 1. Therefore

f0(y) = hn+1(y),

which concludes the proof.
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