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Secure Estimation in the Presence of Integrity

Attacks

Yilin Mo∗, Bruno Sinopoli†

Abstract

We consider the estimation of a scalar state based on m measurements that can be potentially

manipulated by an adversary. The attacker is assumed to have full knowledge about the true value of

the state to be estimated and about the value of all the measurements. However, the attacker has limited

resources and can only manipulate up to l of the m measurements. The problem is formulated as a

minimax optimization, where one seeks to construct an optimal estimator that minimizes the “worst-

case” expected cost against all possible manipulations by the attacker. We show that if the attacker can

manipulate at least half the measurements (l ≥ m/2), then the optimal worst-case estimator should

ignore all measurements and be based solely on the a-priori information. We provide the explicit form

of the optimal estimator when the attacker can manipulate less than half the measurements (l < m/2),

which is based on
(
m
2l

)
local estimators. We further prove that such an estimator can be reduced into

simpler forms for two special cases, i.e., either the estimator is symmetric and monotone or m = 2l+1.

Finally we apply the proposed methodology in the case of Gaussian measurements.

I. INTRODUCTION

The increasing use of networked embedded sensors to monitor and control critical infras-

tructures provides potential malicious agents with the opportunity to disrupt their operations by

corrupting sensor measurements. Supervisory Control And Data Acquisition (SCADA) systems,

for example, run a wide range of safety critical plants and processes, including manufacturing,

water and gas treatment and distribution, facility control and power grids. The first-ever SCADA
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system malware (called Stuxnet) was found in July 2010 and rose significant concern about

SCADA system security [1], [2]. The research community has acknowledged the importance of

addressing the challenge of designing secure estimation and control systems [3].

We consider a secure estimation problem inspired by security concerns that arise from the

possible manipulation of sensor data. We focus our attention on the estimation of a scalar state

x from measurements collected by m sensors, with the caveat that some of these measurements

can be manipulated by a malicious third party. The attacker is assumed to have full information

about the true value of x and all the measurements and use this information to manipulate the

data available to the estimator. Limitations in the resources available to the attacker enable him

to only manipulate l of the m sensors. However, the attacker has total control over the corrupted

sensors, as it can change the measurements of the compromised sensors arbitrarily. To minimize

the estimator’s performance degradation in the presence of such attacks, we construct minimax

estimator that minimize the “worst-case” expected cost.

We start by considering the case l ≥ m/2, in which the attacker can manipulate at least half the

measurements. We show that in such a scenario the optimal worst-case estimators should ignore

all m measurements and be based solely on the a-priori distribution of x. This result provides a

fundamental limitation on the estimation performance in adversarial environment and is in sharp

contrast with non-adversarial estimation theory where even very noisy data can provide some

information.

For the case l < m/2, in which the attacker can manipulate less than half the sensors, we

provide the explicit form of the optimal estimator, which is based on
(
m
2l

)
local estimators.

Therefore, the search space of the optimal estimator is reduced from all possible functions to a

special class of functions. We also prove that the expected “worst-case” estimation performance

is a convex functional with respect to the local estimators provided that cost function is convex.

Hence, convex optimization techniques can be used to compute the optimal estimator when

the local estimators are finite-degree polynomials. For general cases, such an estimator may be

computationally hard to implement, as it needs to compute all
(
m
2l

)
local estimates. However,

we prove that under two special cases, i.e., either the estimator is symmetric and monotone or

m = 2l+1, the optimal estimator can be reduced to simpler form, the computational complexity

of which is O(m logm).
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Related Work

Robust estimators such as M-estimator, L-estimator, R-estimator and etc. have also been ex-

tensively studied in the literature [4], [5], [6]. However, such kinds of approaches usually assume

that the outliers of the data are generated independently by some other probability distribution

different from the model assumptions. Furthermore, the robustness are usually measured by

breakdown points [7], [8] or influence functions [9]. In this paper, we assume that the attacker

generates the optimal “outliers” to destroy the estimation performance. Since the attacker can

take control over multiple sensors, the compromised measurements from these sensors are jointly

selected by the adversary to maximize the estimation error. Furthermore, the security of an

estimator is measured by the worst-case mean squared error. Hence, a robust estimator may

not necessarily be secure and thus the techniques developed for robust estimation need to be

reexamined before they can be applied in the context of security.

For dynamical systems, robust estimation techniques such as H∞ estimators have also been

an active research area for the past decades. The H∞ estimator can be seen as the worst-case

estimator when the disturbance is in the L2 space or of bounded power spectral density, as the

H∞ norm can be interpreted as an induced norm [10]. In security settings, we feel that the

sparsity of the disturbance is a better way to characterize the capability of the adversary, since

it can change the compromised sensor readings arbitrarily.

Furthermore, bad data detection and identification techniques, which is based on truncating

the “atypical” data, have been widely used in large scaled systems such as power grid [11].

While such approaches are very successful in detecting and removing random failures, they are

not effective against integrity attacks. Liu et al. [12] illustrate how an adversary can inject a

stealthy input into the measurements to change the state estimation, without being detected by

the bad data detector. Sandberg et al. [13] consider how to find a sparse stealthy input, which

enables the adversary to launch an attack with a minimum number of compromised sensors. Xie

et al. [14] further illustrate that the stealthy integrity attacks on state estimation can lead to a

financial gain in the electricity market for the adversary.

This paper generalizes our previous works on secure estimation [15], which only consider

designing the optimal symmetric estimator which minimizes the “worst-case” mean squared

error. In this paper, we derive the optimal estimator (not necessarily symmetric), which minimizes
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an arbitrary quasiconvex cost function. Furthermore, this paper extends our previous work on

hypothesis testing in adversarial environment [16], where the system needs to make a binary

decision (instead of real valued state estimation) on which hypothesis is true based on the

potentially compromised sensory information.

The rest of paper is organized as follows: In Section II we formulate the problem of secure

estimation with l manipulated measurements from m total measurements. In Section III, we

consider the optimal estimator design for the cases l ≥ m/2. In Section IV, we provide an

explicit form of the optimal estimator when l < m/2. Furthermore, in Section V we discuss two

special cases, i.e., either the estimator is symmetric and monotone or m = 2l + 1, and prove

that the optimal estimator can be further reduced to simpler forms. In Section VI we provide a

numerical example of Gaussian measurements. Finally Section VII concludes the paper.

II. PROBLEM FORMULATION

The goal is to estimate a random variable x ∈ R from a vector y , [y1, . . . , ym]T ∈ Rm

consisting of m sensor measurements yi ∈ R, where the index i ∈ S , {1, 2, ...,m}. We assume

that x and y follow the following joint distribution:

P ((x, y) ∈ S) = µ(S), (1)

where S ⊆ Rm+1 is a Borel-measurable set and µ is a probability measure on Rm+1.

We assume that an attacker wants to disturb the state estimation. To this end, the attacker has

the ability to manipulate up to l of the m sensor measurements. Formally, this means that our

estimate has to rely on a vector yc ∈ Rm of manipulated measurements defined by

yc = y + γ ◦ ya, (2)

where ◦ is element-wise multiplication and the sensor-selection vector γ taking values in

Sγ , {γ ∈ Rm : γi = 0 or 1,
m∑
i=1

γi = l} (3)

and the bias vector ya taking values in Rm. By selecting which values of γ are nonzero, the

attacker chooses which of the n sensors will be manipulated. The “level” of manipulation is

determined by ya.

Define the estimated state based on yc to be x̂ ∈ R. Now we give a formal definition of the

estimator:
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Definition 1: An estimator f : Rm → R is a mapping from the compromised sensor measure-

ments yc to the state estimate x̂, i.e.,

x̂ = f(yc) = f(y + γ ◦ ya) (4)

Given the state and corresponding state estimation, the error e is defined as

e , x− x̂. (5)

We further define the cost associated with error e to be

cost = c(e), (6)

where c : R → R is the cost function, which is assumed to be a quasiconvex function with

respect to e. In other words, the following inequality holds for all e1 ≤ e2 ≤ e3,

c(e2) ≤ max(c(e1), c(e3)). (7)

Some typical quasiconvex cost functions include the squared error (c(e) = e2) and the absolute

error (c(e) = |e|).

The estimation problem is formalized as a minimax problem where the system operator wants

to select an optimal estimator so as to minimize the expected cost, for the worst case manipulation

by the adversary. Following Kerckhoffs’ Principle [17] that security should not rely on the

obscurity of the system, our goal is to design the estimator f assuming that f is known to the

attacker. We also take the conservative approach that the attacker has full information about the

state of the system. Namely, the underlying x and all the measurements y1, . . . , ym are assumed

to be known to the attacker. However, due to limited resources, the attacker can only manipulate

l of the m sensors. We assume that the system operator knowns how many sensors l can be

attacked, but cannot identify them.

Remark 1: The parameter l can also be interpreted as a design parameter for the system

operator. In general, increasing l will increase the resilience of the estimator under attack.

However, as is shown in the rest of the paper, a large l will result in performance degradation

during normal operation when no sensor is compromised, as more measurements are discarded.

Therefore, there exists a trade-off between resilience and efficiency (under normal operation),

which can be tuned by choosing a suitable parameter l.
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To compute the worst-case expected cost that we seek to minimize, let us first consider that

the adversary compromised a subset I ⊆ S of sensors. We have the following definitions:

Definition 2: Define the cardinality |I| of set I as the number of elements in I.

Definition 3: Define the complement of an index set I ⊆ S as Ic , {x ∈ S : x /∈ I}. The

difference between two index sets K and I is defined as

K\I , K ∩ Ic. (8)

Definition 4: Define vector γI , [γ0, . . . , γm]T ∈ Rm, where γi = 1 if i ∈ I and γi = 0

otherwise.

Definition 5: Given the estimator f , define function f+
I : Rm → R and f−I : Rm → R as

f+
I (y) , sup

ya∈Rm

f(y + γI ◦ ya), (9)

f−I (y) , inf
ya∈Rm

f(y + γI ◦ ya). (10)

Let us further define the following functions:

f+(y) , max
|I|=l

f+
I (y), f−(y) , min

|I|=l
f−I (y). (11)

Remark 2: f+
I (f−I ) can be seen as the maximum (minimum) state estimate x̂ that the attacker

can enforce when the attacker compromised sensors in a fixed set I. Hence, f+ (f−) indicates

the maximal(minimum) state estimation x̂ that an attacker can enforce with the worst possible

set of compromised sensors.

By (7), for all γ ∈ Sγ, ya ∈ Rm, the following inequality holds:

c(x− f(y + γ ◦ ya)) ≤ max
[
c(x− f+(y)), c(x− f−(y))

]
, (12)

which indicates that the maximum cost is achieved either when x̂ = f+(y) or x̂ = f−(y). Thus,

given values of x, y and an estimator f , an optimal policy for the attacker can be described as

follows:

The attacker computes f+(y) and f−(y) and compare them with x. If c(x− f+(y)) ≥ c(x−

f−(y)), then the attacker chooses γ and ya such that f(y+ γ ◦ ya) equals f+(y) (or as close as

possible). Otherwise, the attacker chooses γ and ya such that f(y + γ ◦ ya) equals f−(y) (or as

close as possible).
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Under this worst-case attacker policy, we can define the worst-case expected cost C for an

estimator f 1:

C(f) , E
{

max
[
c(x− f+(y)), c(x− f−(y))

]}
. (13)

Before continuing on, we would like to state the following theorem regarding the optimality

of an estimator f , which will be used in future analysis.

Theorem 1: For any estimator f , if there exist functions h+, h− and g+, g−, such that

g+ ≥ f+ ≥ h+ ≥ h− ≥ f− ≥ g−, (14)

then

C(f) ≥ E
{

max
[
c(x− h+(y)), c(x− h−(y))

]}
, (15)

C(f) ≤ E
{

max
[
c(x− g+(y)), c(x− g−(y))

]}
. (16)

Proof: We only prove (15), as (16) follows the same argument. Since c is quasiconvex, it

is easy to see that

c(x− h+(y)) ≤ max
[
c(x− f+(y)), c(x− f−(y))

]
,

c(x− h−(y)) ≤ max
[
c(x− f+(y)), c(x− f−(y))

]
,

which implies that

max
[
c(x− f+(y)), c(x− f−(y))

]
≥ max

[
c(x− h+(y)), c(x− h−(y))

]
.

(17)

By taking expectation on both sides, we can conclude the proof.

The following corollary can be immediately proved by Theorem 1:

Corollary 1: For two estimators f1 and f2, if the following inequalities hold

f+
1 ≥ f+

2 ≥ f−2 ≥ f−1 , (18)

then

C(f1) ≥ C(f2). (19)

1Even if the function f is measurable, f+ and f− may not be necessarily measurable. In that case, we can use upper Darboux

integral instead of Lebesgue integral to define the expected cost. However, all the discussion in this paper will hold regardless.
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Theorem 1 implies that in order to find the optimal f , we should make f+(y) and f−(y) as

“close” as possible to each other.

III. OPTIMAL ESTIMATOR DESIGN FOR l ≥ m/2

In this section we consider the case when half or more of the measurements can be manipulated

by the attacker. We show that, in this case, the attacker can render the information provided by

the manipulated measurement vector y useless, forcing the optimal estimate to be determined

exclusively from the a-priori distribution of x, which is formalized as the following theorem:

Theorem 2: If l ≥ m/2, then the optimal estimator2 f ∗ is given as f ∗ = δ∗, where δ∗ is the

solution of the following optimization problem:

minimize
δ∈R

E [c(x− δ)] . (20)

The rest of the section is devoted to the proof of Theorem 2, which requires an intermediate

result:

Lemma 1: If I ∪ J = S, then there exists a constant δ independent of y, such that

f+
I (y) ≥ δ ≥ f−J (y),∀y. (21)

Proof: We will prove Lemma 1 by contradiction. It is easy to see that (21) is equivalent to

f+
I (y) ≥ f−J (y′),∀y, y′ ∈ Rm.

Suppose that on the contrary, there exist y = [y1, . . . , ym]T and y′ = [y′1, . . . , y
′
m]T , such that

f+
I (y) < f−J (y′). Now consider another yo ∈ Rm, such that

yoi =

y
′
i if i ∈ I

yi if i ∈ Ic

Since I ∪ J = S, Ic ⊆ J . It is easy to verify that

yo = y + γI ◦ (yo − y), yo = y′ + γJ ◦ (yo − y′).

2The optimal estimators discussed in this section and later sections may not necessarily be unique.
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Therefore, from the definition of f+
I and f−J , we have

f(yo) ≤ f+
I (y) < f−J (y′) ≤ f(yo),

which is impossible.

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Since l ≥ m/2, for any set I with cardinality l, we could always find

another set J , such that |J | = l and I ∪ J = S. By Lemma 1, there exist two constants δ+
I

and δ−J , such that

f+
I (y) ≥ δ+

I ≥ δ−J ≥ f−J (y).

Therefore,

f+(y) = max
|I|=l

f+
I (y) ≥ max

|I|=l
δ+
I ,

f−(y) = min
|I|=l

f−I (y) ≤ min
|I|=l

δ−I .

Thus, we could always find a constant δ, such that

f+(y) ≥ δ ≥ f−(y).

By Corollary 1, the expected cost of the estimator f1(y) = δ is less than or equals to f(y).

Hence, the optimal estimator is a constant estimator and it is straight forward to see, from the

definition of the expected cost, that the optimal δ is the solution of (20).

IV. OPTIMAL ESTIMATOR DESIGN FOR l < m/2

We now consider the case when less than half the measurements can be manipulated by the

attacker, i.e., l < m/2.

Definition 6: Let I = {i1, . . . , ik} ⊆ {1, . . . ,m} be a subset of S. Define the projection

function ProjI : Rm → Rk as

ProjI(y) , [yi1 , . . . , yik ]T . (22)

Definition 7: Let K be a subset of S with cardinality 2l. An estimator ϕK : Rm → R is called

a local estimator if the following equality holds

ϕK(y) = ϕK(y + γK ◦ ya),∀ya ∈ Rm. (23)
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Remark 3: The locality of ϕK is based on the fact that ϕK only depends on those measurements

whose indices are not in K. It is trivial to prove that a local estimator ϕK can be written as a

function of projected measurements:

ϕK(y) , ΦK(ProjKc(y)), (24)

where ΦK : Rm−2l → R.

We are now ready to state the main theorem, which relates the optimal estimator f ∗ with a

set of local estimators.

Theorem 3: If l < m/2, then the optimal estimator f ∗ is of the following form

f ∗(y) = min
|I|=l

[
max

|J |=l,J∩I=∅
ϕ∗I∪J (y)

]
, (25)

where {ϕ∗K} is a set of
(
m
2l

)
local estimators, given by the solution of the following optimization

problem:

minimize
{ϕK} set of local estimators

E
[

max
|K|=2l

c(x− ϕK(y))

]
. (26)

The rest of the section is devoted to proving Theorem 3, which requires several intermediate

results:

Lemma 2: If l < m/2, then for any estimator f , there exists a set of local estimators {ϕK},

such that

C(f) ≥ E
[

max
|K|=2l

c(x− ϕK(y))

]
. (27)

Proof: Let f be an arbitrary estimator and K be a subset of S with cardinality 2l. Let us

find a subset I ⊂ K with cardinality l and define subset

J , K\I.

Now define functions ϕK, ϕ−K to be

ϕK(y) , inf
yb

sup
ya

f(y + γI ◦ ya + γJ ◦ yb)

ϕ−K(y) , sup
ya

inf
yb
f(y + γI ◦ ya + γJ ◦ yb)

It is easy to see that ϕK is a local estimator, since it does not depend on measurement yi,

where i ∈ I ∪ J . Moreover, we have the following inequalities:

f+ ≥ f+
I ≥ ϕK ≥ ϕ−K ≥ f−J ≥ f−. (28)
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Hence, we could find
(
m
2l

)
local estimator ϕKs, such that the following inequalities hold:

f+ ≥ ϕK ≥ f−,∀|K| = 2l.

Since the cost function c is quasiconvex,

max
[
c(x− f+(y)), c(x− f−(y))

]
≥ c(x− ϕK(y)), ∀|K| = 2l,

which implies that

max
[
c(x− f+(y)), c(x− f−(y))

]
≥ max
|K|=2l

[c(x− ϕK(y))] .

By taking the expectation on both sides, we can conclude the proof.

Remark 4: Lemma 2 provides a lower bound for the expected cost of any estimator, while the

following lemma, which can be seen as the converse of Lemma 2, indicates that such a lower

bound is achievable.

Lemma 3: For an arbitrary set of local estimators {ϕK}, define the following estimator f to

be:

f(y) = min
|I|=l

[
max

|J |=l,J∩I=∅
ϕI∪J (y)

]
. (29)

The expected cost of f satisfies the following inequality:

C(f) ≤ E
[

max
|K|=2l

c(x− ϕK(y))

]
. (30)

Proof: The proof is divided into four steps:

1) We first prove the following inequality:

f(y) ≥ max
|J |=l

[
min

|I|=l,J∩I=∅
ϕI∪J (y)

]
. (31)

which is equivalent to the following inequality:

max
|J |=l,J∩I0

ϕI0∪J (y) ≥ min
|I|=l,I∩J0

ϕI∪I0(y), (32)

for all index sets |I0| = |J0| = l. Let us find an index set K, such that I0 ⊂ K, J0 ⊂ K

and |K| = 2l. Therefore, we have

ϕK(y) = ϕI0∪(K\I0)(y) = ϕ(K\J0)∪J0(y).

Hence, for all |I0| = |J0| = l,

max
|J |=l,J∩I0

ϕI0∪J (y) ≥ ϕK(y) ≥ min
|I|=l,I∩J0

ϕI∪J0(y),
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which implies (32) and hence (31).

2) By (29) and (31), it is easy to verify that for arbitrary sets I0,J0 ⊆ S with cardinality l,

the following inequalities hold:

f(y) ≤ max
|J |=l,J∩I0=∅

ϕI0∪J (y), (33)

f(y) ≥ min
|I|=l,J0∩I=∅

ϕI∪J0(y). (34)

3) As a result of (33),

f+
I0(y) = sup

ya
f(y + γI0 ◦ ya)

≤ sup
ya

max
|J |=l,J∩I0=∅

ϕI0∪J (y + γI0 ◦ ya)

= max
|J |=l,J∩I0=∅

ϕI0∪J (y). (35)

Similarly, one can prove that

f−I0(y) ≥ min
|J |=l,J∩I0=∅

ϕI0∪J (y). (36)

4) By (35),

f+(y) = max
|I|=l

f+
I (y) ≤ max

|I|=l
max

|J |=l,J∩I=∅
ϕI∪J (y)

= max
|K|=2l

ϕK(y).

Similarly,

f−(y) ≥ min
|K|=2l

ϕK(y).

Thus, (30) holds by Theorem 1,

Now we are ready to prove Theorem 3.

Proof of Theorem 3: Let {ϕ∗K} be the optimal solution of (26). By Lemma 3, the expected

cost of the estimator f ∗ satisfies:

C(f ∗) ≤ E
[

max
|K|=2l

c(x− ϕ∗K(y))

]
.

On the other hand, by Lemma 2, for any estimator f , there exists a set of local estimators {ϕK},

such that

C(f) ≥ E
[

max
|K|=2l

c(x− ϕK(y))

]
.
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Since {ϕ∗K} is the optimal solution of (26),

E
[

max
|K|=2l

c(x− ϕ∗K(y))

]
≤ E

[
max
|K|=2l

c(x− ϕK(y))

]
,

which implies that

C(f ∗) ≤ C(f).

Therefore, we can conclude the proof.

By Theorem 3, in order to derive the optimal estimator f ∗, one needs to solve the optimization

problem (26), the convexity of which is proved by the following theorem:

Theorem 4: Let {ϕK}, {ψK} be two sets of local estimators. Define a new set of local

estimators {ρK}, such that for every K,

ρK = αϕK + βψK,

where α, β ≥ 0 and α+β = 1. If the cost function c is convex in e, then the following inequality

holds:

E
[

max
|K|=2l

c(x− ρK(y))

]
≤ αE

[
max
|K|=2l

c(x− ϕK(y))

]
+ βE

[
max
|K|=2l

c(x− ψK(y))

]
.

(37)

Proof: Since we restrict the cost function c to be convex,

c(x− ρK(y)) ≤ αc(x− ϕK(y)) + βc(x− ψK(y)).

Thus,

max
|K|=2l

c(x− ρK(y)) ≤ max
|K|=2l

[αc(x− ϕK(y)) + βc(x− ψK(y))]

≤ α max
|K|=2l

c(x− ϕK(y)) + β max
|K|=2l

c(x− ψK(y)).

By taking the expectation on both sides, we can finish the proof.

By Theorem 4, we know that the objective function of (26) is a convex functional with respect

to ϕK provided that c is convex. If we further assume that ϕK belongs to some finite dimensional

linear space, e.g., all polynomials of degree less than k, then ϕK can be written as

ϕK = a1φ1 + a2φ2 + · · ·+ akφk,
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where ais are scalars and {φ1, . . . , φk} is the basis of the space, then (26) becomes a convex

optimization problem. As a result, algorithms such as interior point method [18] can be used to

find the optimal ais and thus the optimal ϕK.

It is also worth noticing that even if we could derive the optimal ϕK, (25) is still computa-

tionally hard. In particular, to determine f(y), we need to compute all
(
m
2l

)
different ϕK(y)s,

which could be a huge burden if m is large. In the next section, we consider two special cases,

under which (25) can be simplified and thus computed efficiently.

V. SPECIAL CASES

In this section, we prove that under certain conditions, (25) can be simplified. We first consider

the case where the estimator f is symmetric and monotone, which is given by the following

definition:

Definition 8: f(y) is symmetric if

f(y1, . . . , ym) = f(yi1 , . . . , yim),

for any permutation (i1, . . . , im) of S.

Definition 9: f(y) is monotonically increasing if the following inequality hold:

f(y1, . . . , ym) ≥ f(y′1, . . . , y
′
m), if yi ≥ y′i, ∀i.

f is monotonically decreasing if −f is monotonically increasing. f is monotone if it is either

monotonically increasing or monotonically decreasing.

Remark 5: The symmetry assumption is reasonable if the joint distribution of x and y is also

symmetric on y, which implies that the sensors are statistically identical.

We further define the following function:

Definition 10: Define the function Medml : Rm → Rm−2l as a symmetric function, which

satisfies3

Medml ([y1, . . . , ym]T ) , [yl+1, . . . , ym−l]
T , (38)

when y1 ≤ · · · ≤ ym.

3Due to symmetry, we only need to define the function when y1 ≤ · · · ≤ ym.
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Remark 6: The Medml function can be computed by removing the largest l measurements and

smallest l measurements. In particular, if m = 2l+ 1, then Medml (y) is simply the median of y.

The following theorem characterizes the optimal symmetric and monotone estimator f :

Theorem 5: If l < m/2, then the optimal symmetric and monotone estimator is of the following

form:

f ∗(y) = Φ∗(Medml (y)), (39)

where Φ∗ : Rm−2l → R is the solution of the following optimization problem:

minimize
Φ symmetric and monotone

E
{

max
|K|=2l

c [x− Φ(ProjKc(y))]

}
. (40)

Before proving Theorem 5, we need the following lemma:

Lemma 4: Let Φ : Rm−2l → R be a symmetric and monotone function. If the local estimator

ϕK satisfies

ϕK(y) = Φ(ProjKc(y)),

then the corresponding estimator f(y) given by:

f(y) = min
|I|=l

[
max

|J |=l,J∩I=∅
ϕI∪J (y)

]
satisfies the following equality:

f(y) = Φ(Medml (y)). (41)

Proof: We will assume that Φ is monotonically increasing, since the case where Φ is

monotonically decreasing can be proved by similar arguments. We can further assume that

y1 ≤ · · · ≤ ym due to symmetry.

Let us define I0 = {m− l + 1, . . . ,m} and J0 = {1, . . . , l}. It is clear that

f(y) = min
|I|=l

[
max

|J |=l,J∩I=∅
ϕI∪J (y)

]
≤ max
|J |=l,J∩I0=∅

ϕI0∪J (y)

Now by monotonicity of Φ, we know that

max
|J |=l,J∩I0=∅

ϕI0∪J (y) = ϕI0∪J0(y) = Φ(Medml (y)),
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which implies that f(y) ≤ Φ(Medml (y)). On the other hand, we know that

f(y) = min
|I|=l

[
max

|J |=l,J∩I=∅
ϕI∪J (y)

]
≥ max
|J |=l

[
min

|I|=l, I∩J=∅
ϕI∪J (y)

]
≥ min
|I|=l, I∩J0=∅

ϕI∪J0(y).

By monotonicity of ϕ, we have that

min
|I|=l, I∩J0=∅

ϕI∪J0(y) = ϕI0∪J0(y) = Φ(Medml (y)),

which implies that f(y) ≥ Φ(Medml (y)). Thus f(y) = Φ(Medml (y)), which concludes the proof.

We are now ready to prove Theorem 5:

Proof: Denote the local estimators for the optimal symmetric and monotone estimator f ∗ as

ϕ∗K. Recall that from the definition of local estimators, there exists Φ∗K, such that the following

equality holds:

ϕ∗K(y) = Φ∗K(ProjKc(y)).

By similar argument as in the proof of Lemma 2, we know that Φ∗K is identical, symmetric and

monotone. Therefore, by Lemma 4, we can conclude the proof.

Now we consider the optimal estimator for the boundary case, where m = 2l + 1.

Theorem 6: If m = 2l + 1, then the optimal estimator f ∗(y) can be expressed as

f ∗(y) = Median(τ ∗1 (y1), . . . , τ ∗m(ym)), (42)

where τi : R→ R and solves the following optimization problem:

minimize
τ1,...,τm

E
[
max
i

c(x− τi(yi))
]
. (43)

Proof: Let f ∗ be the optimal estimator with local estimator ϕ∗Ks. From the definition of

local estimators, there exists Φ∗K, such that ϕ∗K(y) = Φ∗K(ProjKc(y)). Since m = 2l+1, we could

define

τ ∗i (yi) = Φ∗K(yi), (44)

August 27, 2015 DRAFT



17

where {i} = Kc. Now consider a function Φ : R→ R, such that Φ(t) = t and the corresponding

local estimators

ϕK(y) = Φ(ProjKc(y)) = ProjKc(y).

Define an estimator g as

g(y) , min
|I|=l

[
max

|J |=l,J∩I=∅
Proj(I∪J )c(y)

]
.

By Lemma 4 and the fact that m = 2l + 1, g(y) = Medml (y) = Median(y). Furthermore, it is

easy to verify that

f ∗(y) = g(τ ∗1 (y1), . . . , τ ∗m(ym)).

Hence, f ∗(y) = Median(τ ∗1 (y1), . . . , τ ∗m(ym)).

Remark 7: It is worth noticing that given the optimal Φ∗ or {τ ∗i }, the computational complexity

of (39) and (42) is O(m logm), which is the complexity of sorting m numbers.

VI. NUMERICAL EXAMPLES: GAUSSIAN CASE

We assume the state x ∼ N (0, 1) is normal distributed with zero mean and unit variance. The

measurements equation for sensor i is given as

yi = x+ vi,

where vi ∼ N (0, 1) is also normal distributed with zero mean and unit variance. We further

assume that x and vis are independent. The cost function c(e) = e2. We first consider the case

where m = 3 l = 1. By Theorem 6, the optimal f(y) is of the following form

f(y) = Median(τ1(y1), τ2(y2), τ3(y3))

We seek to find the optimal τis over all polynomials of degree less than 5. We will ap-

proximate C(f) by Monte-Carlo method. To be specific, we first randomly generate a set of

(x(k), y
(k)
1 , y

(k)
2 , y

(k)
3 ), where k = 1, . . . , N , based on the Gaussian assumption. The expected cost

C(f) is then approximated by

C(f) ≈ 1

N

N∑
k=1

[
max
i=1,2,3

(x(k) − τi(y(k)
i ))2

]
We use gradient descent to find the optimal aks, such that τi(yi) =

∑4
k=0 aky

k
i . In this simulation,

we choose the size of the training set to be N = 100000. The optimal τi found by gradient descent
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is given by τi(yi) = 0.29yi, and the worst case cost is C(f) = 0.91. On the other hand, if no

sensor is compromised, then the optimal estimator is x̂ = (y1 + y2 + y3)/4, which has a mean

squared error of 0.25. Thus, there is a more than threefold increase in the expected cost caused

by the attacker. Further, the expected cost of a constant estimator x̂ = Ex = 0 is 1. Hence, it can

be seen that one compromised sensor can potentially cause a large degradation in the estimation

performance.

It is also worth noticing that the optimal τis are linear (within the numerical error). However,

as we only search over the space of polynomials of degree less than 5, it is still an open problem

to find the true optimal τis.

Next we consider C(f) when m increases and l = 1 is fixed. By Theorem 5, the optimal

estimator is of the following form f ∗(y) = Φ∗(Medml (y)). In this paper, we only consider

a symmetric and linear Φ. In other words, we only consider f ∗(y) of the following form:

f(y) = a1TMedml (y), where 1 is an all one vector of proper dimension and a is a constant. The

optimal C(f) for estimators with a symmetric and linear Φ function is listed in Table I.

m 3 4 5 6 7 8 9 10

C(f) 0.91 0.82 0.66 0.57 0.49 0.43 0.38 0.33
TABLE I

OPTIMAL C(f) FOR ESTIMATORS WITH A SYMMETRIC AND LINEAR Φ WHEN l = 1.

VII. CONCLUSION AND FUTURE WORK

In this paper we consider the problem of designing estimator able to minimize the mean

squared error in the presence of l corrupted measurements due to integrity attacks on a subset

of the sensor pool. The problem is posed as a minimax optimization where the goal is to design

the optimal estimator against all possible attacker’s strategies. We show that if the attacker can

manipulate at least half of the m measurements (l ≥ m/2) then the optimal worst-case estimator

should ignore all m measurements and be based solely on the a-priori information. When the

attacker can manipulate less than half of the measurements (l < m/2), we show that the optimal

estimator is based on
(
m
2l

)
local estimators. We further prove that such an estimator can be

reduced into simpler forms for two special cases. We are planning to expand our research to the

case of multidimensional state estimation in the future.

August 27, 2015 DRAFT



19

REFERENCES

[1] T. M. Chen, “Stuxnet, the real start of cyber warfare? [editor’s note],” IEEE Network, vol. 24, no. 6, pp. 2–3, 2010.

[2] D. P. Fidler, “Was stuxnet an act of war? decoding a cyberattack,” IEEE Security & Privacy, vol. 9, no. 4, pp. 56–59,

2011.

[3] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the security of control systems,” in HOTSEC’08:

Proceedings of the 3rd conference on Hot topics in security. Berkeley, CA, USA: USENIX Association, 2008, pp. 1–6.

[4] S. A. Kassam and H. V. Poor, “Robust techniques for signal processing: A survey,” Proceedings of the IEEE, vol. 73,

no. 3, pp. 433–481, 1985.

[5] R. A. Maronna, D. R. Martin, and V. J. Yohai, Robust Statistics: Theory and Methods. Wiley, 2006.

[6] P. J. Huber and E. M. Ronchetti, Robust Statistics. Wiely, 2009.

[7] F. R. Hampel, “A general qualitative definition of robustness,” The Annals of Mathematical Statistics, vol. 42, no. 6, pp.

1887–1896, Dec 1971.

[8] D. L. Donoho and P. J. Huber, “The notion of breakdown point,” A Festschrift for Erich L. Lehmann, pp. 157–184, 1983.

[9] F. R. Hampel, “The influence curve and its role in robust estimation,” Journal of the American Statistical Association,

vol. 69, no. 346, pp. 383–393, 1974.

[10] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Prentice Hall New Jersey, 1996, vol. 272.

[11] A. Abur and A. G. Expósito, Power System State Estimation: Theory and Implementation. CRC Press, 2004.

[12] Y. Liu, M. Reiter, and P. Ning, “False data injection attacks against state estimation in electric power grids,” in Proceedings

of the 16th ACM conference on Computer and communications security, 2009.

[13] H. Sandberg, A. Teixeira, and K. H. Johansson, “On security indices for state estimators in power networks,” in First

Workshop on Secure Control Systems, 2010.

[14] L. Xie, Y. Mo, and B. Sinopoli, “Integrity data attacks in power market operations,” IEEE Transactions on Smart Grid,

vol. 2, no. 4, pp. 659–666, 2011.

[15] Y. Mo and B. Sinopoli, “Robust estimation in the presence of integrity attacks,” in 52nd IEEE Conference on Decision

and Control, 2013, p. submitted.

[16] Y. Mo, J. Hespanha, and B. Sinopoli, “Resilient detection in the presence of integrity attacks,” Signal Processing, IEEE

Transactions on, vol. 62, no. 1, pp. 31–43, Jan 2014.

[17] A. Kerckhoffs, “La cryptographie militairie,” Journal des Sciences Militaires, vol. IX, pp. 5–38, 1883.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

August 27, 2015 DRAFT


