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Cyber-Physical Systems (CPS) refer to the embedding of widespread sensing, networking, computa-

tion, and control into physical spaces with the goal of making them safer, more efficient, and reliable. Driven

by the miniaturization and integration of sensing, communication, and computation in cost effective devices,

CPSs are bound to transform several industries such as aerospace, transportation, built environments, en-

ergy, health-care, and manufacturing, to name a few. This great opportunity, unfortunately, is matched by

even greater challenges. Taming the complexity of design and analysis of these systems poses a fundamental

problem as a new paradigm is needed to bridge various scientific domains, which, through the years, have

developed significantly different formalisms and methodologies. In addition, while the use of dedicated com-

munication networks has so far sheltered systems from the outside world, use of off-the-shelf networking and

computing, combined with unattended operation of a plethora of devices, provides several opportunities for

malicious entities to inject attacks on CPSs. A wide variety of motivations exists for launching an attack on

CPSs, ranging from economic reasons such as drawing a financial gain, all the way to terrorism, for instance,

threatening an entire population by manipulating life-critical resources. Any attack on safety-critical CPSs

may significantly hamper the economy and lead to the loss of human lives. While the threat of attacks on

CPSs tends to be underplayed at times, the Stuxnet worm provided a clear sample of the future to come.

This malware, targeting a uranium enriching facility in Iran, managed to reach the Supervisory Control
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and Data Acquisition (SCADA) system controlling the centrifuges used in the enrichment process. Stuxnet

modified the control system, increasing pressure in the centrifuges in a first version of the worm and spinning

centrifuges in an erratic fashion in a second version. As a result, Stuxnet caused significant damage to the

plant [1]. For details, see “The Stuxnet Attack”.

This article proposes a control theoretic method, called physical watermarking, to authenticate the

correct operation of a control system. Authentication in cyber-physical systems requires that the system

operator verify the identity of a component not only in the cyber world, but also within the framework of the

physical dynamics of the system. While tools exist in cryptography to perform authentication, historical data

show that attackers often manage to break these security mechanisms. Moreover, such tools are ineffective

against physical attacks on the system or insiders who are usually authenticated users. There arises the

need to expand and complement the existing set of tools to improve the resilience of CPSs. The presence

of a dynamical system, while presenting new challenges, offers new opportunities to improve detection and

resilience. The existence of accurate mathematical models describing the underlying physical phenomena

enables prediction of future behavior and more importantly unforeseen deviations from it. The ability to

recognize irregularities in the dynamics of a system enables a principled approach to intrusion detection

and resilient design. The concept of physical watermarking emerges in this context. Its utility lies in its

ability to allow physical authentication of cyber-physical components. By injecting a known noisy input

to a physical system, it is expected that the effect of this input can be found in the measurement of the

true output, due to the system dynamics. As such, if an attacker is unaware of this physical watermark,

he cannot adequately emulate the system because he is unable to consistently generate the component of

the output associated with this known noisy input. Consequently, the watermark acts as a cyber-physical

nonce, forcing an attacker to generate outputs unique to the given inputs at a chosen time. The next section

further examines existing work and techniques related to CPS security.

Related Work

In the context of system theory, fault detection and isolation methods, used to detect anomalies in

the system by measuring the discrepancy between the measured behavior and behavior predicted by the
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system model, have been extensively studied over the past decades. In [2], the author provides a survey

of detection schemes for the class of stochastic linear discrete time systems. First, he considers failure

sensitive filters where standard estimation techniques such as the Kalman filter are altered so that state

estimates are sensitive to particular failures, for instance the failure of a sensor or actuator. He next considers

voting schemes, which leverage the potential presence of redundant hardware to detect failures. The author

also discusses multiple hypothesis testing where the designer postulates several failure modes, for instance

potential failure directions of the state, and performs statistical tests on received measurements to determine

the presence of any of the specified contingencies. Finally, the author considers detection schemes based on

the analysis of innovations, which are the differences between observed and expected data, for instance the

χ2 test discussed later in the article. He characterizes these schemes in terms of complexity, flexibility in the

types of failures modes that can be detected, as well as performance both in detecting the presence of a fault

as well as identifying the source and magnitude of a fault. While the given approaches can detect random

failures, these methods are less effective against malicious attacks on control systems. This conclusion stems

from the observation that while random faults can be seen as a special class of attacks, the set of intelligent

attacks is much richer. Therefore, fault detection algorithms may fail under the attack of an intelligent

adversary.

For example, traditional bad data detection techniques such as the largest residue test [3] have been

widely used for systems with a static model, such as the power grid. Here a linear model with Gaussian

noise is often used to directly relate the state, bus angles, to the outputs, power flows or power injections.

However, in [4], the authors show that an attacker who is aware of the grid’s configuration can inject a

stealthy input into the measurements to change state estimation on the power grid. This attack, known as a

false data injection attack, is implemented by inserting errors, which lie in the range space of the observation

matrix, into sensor measurements. The authors separately consider the case where an adversary has access

to only a given subset of sensors and the case where an adversary only has enough resources to modify a

certain number of sensors. Within this context, the authors also consider the scenario where an adversary

wants to insert a bias along a specific direction into the state estimate and the scenario where the attacker

is indifferent to the direction of the error inserted into the state estimate. For each scenario, the authors
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provide algebraic conditions to verify the existence of stealthy attack vectors, which result in no change to

the residue, and methods to compute a feasible attack vector. Furthermore, the authors similarly introduce

and analyze generalized false data injection attacks where small additional errors in the residue are tolerated

in order to achieve more powerful attacks. Alternatively, [5] considers false data injection attacks on the

grid from the system operator’s point of view. The authors consider an adversary who wishes to manipulate

a specific sensor measurement. The authors then propose two security indices for each sensor to quantify

the least effort needed for an adversary to achieve a feasible attack while avoiding triggering the bad data

detector. The first index characterizes the total number of sensors that must be modified to insert a bias into

a single given sensor measurement. Meanwhile, the second index roughly characterizes the energy required

to bias a single sensor measurement. These indices allow a system operator to identify potentially sparse

attacks and allocate additional resources such as redundant sensors or encryption schemes as needed.

On the other hand, dynamical system models raise additional challenges for an adversary. Here, to

remain undetected, an adversary must choose attack vectors that are consistent not only with the static obser-

vation model, but also with state dynamics at all times. In [6], the authors consider a general continuous-time

control system. The adversary here can insert arbitrary errors to a unknown subset of sensors and actua-

tors. The authors consider the notions of attack detectability and identifiability. In particular, the authors

provide algebraic conditions that indicate if the defender can detect and identify all attacks for a given set of

vulnerable sensors and actuators as well as graph theoretic conditions to characterize undetectable attacks.

Furthermore, the authors propose centralized and distributed failure sensitive filters to perform attack de-

tection as well as a centralized filter to perform attack identification. The proposed filters provide perfect

detection and identification when feasible. The results given are applied to a dynamic model of the power

grid. In [7], the authors consider the problem of robust control and estimation in the presence of adversaries.

The authors first consider an adversary who can insert arbitrary errors in sensor measurements and show that

perfect estimation is infeasible when the adversary manipulates half of the sensor measurements. Moreover,

the authors show that changing system dynamics through state feedback can allow the defender to perform

perfect estimation when less than half the sensor measurements are altered. The limiting assumption here is

that there exists a local controller with complete access to the state. Next, the authors consider a scenario
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where an adversary can arbitrarily manipulate up to q sensors and actuators and derive algebraic conditions

under which the defender can perform perfect state estimation and identify the attack vectors. In their

main result, the authors consider the problem of stabilizing a plant under output feedback and establish a

principle of separation of estimation and control while under sensor attacks. Finally, an efficient practical

decoder to perform this estimation is given in the case of just sensor attacks as well as sensor and actuator

attacks.

The feasibility and detection of cyber physical attacks has also been considered in distributed systems.

For example, [8] considers the setting of a wireless control network, which consists of a set of nodes with a

sparse underlying communication network. A subset of nodes communicates directly with sensors, a subset of

nodes communicates directly with actuators, and stabilizing output feedback is performed using distributed

linear iterations. Additionally, an unknown subset of nodes is malicious and can inject arbitrary errors

into its components of the state. The authors consider the design of an intrusion detection system, which

can recover sensor outputs for data logging purposes and can identify malicious nodes. Furthermore, the

authors derive both algebraic and graphical conditions to determine the feasibility of perfect estimation and

detection. Moreover, the authors propose a systematic procedure to estimate sensor outputs and identify

malicious nodes. Additionally, [9] and [10] consider the feasibility and detection of attacks in distributed

systems. Specifically, [9] considers a system where nodes attempt to compute functions of their initial states

by means of distributed linear iterations. The authors assume there exists a subset of malicious nodes,

which broadcast incorrect values of their states to their neighbors. Here, the authors prove that a given node

calculating an arbitrary function can tolerate up to f faulty agents if and only if there exists at least 2f + 1

vertex disjoint paths to any non-neighboring node. Moreover, a combinatorial procedure to determine the

entire initial state is provided. Alternatively, [10] considers the special case of consensus algorithms where

a set of agents all attempt to compute the same function of their initial states through distributed linear

iterations. The authors consider a scenario where there exist malicious agents who collude and may know the

structure of the network and a scenario where there exists faulty agents who do not collude. Here, algebraic

and graphical conditions are given for when faulty and malicious agents can be detected and identified. The

authors then characterize the effect unidentifiable inputs have on the consensus value and propose three
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failure sensitive filters to detect and identify malicious or faulty nodes.

In scenarios [6, 7, 8, 9, 10], the attacker can either arbitrarily perturb the system along certain direc-

tions without being detected by any filter or cannot induce any perturbation, without incurring detection.

However, in these contributions, the system model is assumed to be noiseless, which greatly favors the failure

detector, since the evolution of the system is deterministic and any deviation from the predetermined trajec-

tory can be detected. A more realistic scenario needs to account for a noisy environment. In this case, it is

harder to detect malicious behavior since the adversary may inject an attack that renders the compromised

system statistically indistinguishable from the healthy system.

In [11], the authors consider attacks on control systems in a noisy environment. The adversary in this

system is aware of the plant model, noise statistics, and the controller and state estimator. The attacker

can also manipulate a subset of sensors. The authors derive sufficient and necessary conditions for the

feasibility of a dynamic false data injection attack where an attacker can cause unbounded errors in the state

estimate without substantially increasing the probability of detection by a residue detector. Additionally,

the authors derive an algorithm to perform such an attack. This method involves rendering unstable modes

in the system unobservable. To improve resilience to such an attack, the authors suggest using redundant

sensors to measure unstable modes. Similarly, [12] considers false data injection attacks in a noisy wireless

sensor network without control inputs, where again the adversary has access to the system model as well as

a subset of sensors. Here, the authors bound the reachable region of the estimator biases that an adversary

can inject without substantially increasing his probability of detection. The reachable region is characterized

by formulating the attack as a constrained optimal control problem.

In [13, 14], the authors analyze the replay attack model inspired by the Stuxnet example. Here, an

adversary can read and modify all sensor signals in the system, which is assumed to be in steady state.

The attacker, rather than causing physical damage to the system by perturbing sensor measurements along

specific directions as is done in a false data injection attack discussed above, can insert a harmful input

into the system. To evade detection, the attacker replays previous sensor measurements to the operator.

These outputs are statistically identical to the true outputs in steady state. Furthermore, unlike the false

data injection attack, the adversary requires no knowledge of the system model to generate stealthy outputs.
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Because the adversary hijacks all sensors, resilient control as done by [7] cannot stabilize the system and

as such the main focus in countering a replay attack is detection. The authors of [13, 14] create a physical

authentication scheme, where a random “watermark” signal is added to the optimal control signal. A digital

watermark, traditionally seen in audio and image processing, embeds information in a carrier signal, which

is later used to verify authenticity or integrity of the owner. One application of digital watermarking is in

source tracking of illegally copied movies where a watermark is used to determine the owner of the original

signal. Similarly, in [13, 14] if the system is operating normally, then the effect of the chosen watermark signal

is present in the sensor measurements. However, if the system is malfunctioning or under attack, the effect

of the watermark signal chosen by the system operators cannot be detected. Conceptually, this approach is

similar to a challenge-response authentication scheme in information security, where the watermark signal

and the sensor measurements can be seen as the “challenge” and “response” respectively. Table 1 summarizes

previous work mentioned in this article related to control system security. However, note that Table 1 does

not exhaustively summarize all previous work in control system security and apologies are extended for any

omissions.

This article further investigates the problem of designing the optimal watermark signal in the class

of stationary Gaussian processes to maximize a relaxed version of the expected Kullback-Leibler divergence

between the distributions of the compromised and healthy residue vector, while satisfying a constraint on

the control performance. This approach can be seen as a generalization of [13, 14], where only independent

and identically distributed (i.i.d.) Gaussian processes are considered.

Observe that the fundamental requirements of physical security in CPS are applicable to the notion

of security in general control systems. As such, the watermarking scheme described in this article is applied

to the class of discrete linear time invariant state-space models. The optimization problem, when carried out

in the frequency domain, can be separated into two steps where the optimal direction of the signal for each

frequency is first computed and then all possible frequencies are considered to find the optimal watermark

signal.

The rest of the article is organized as follows: First, the system description is given. Here the linear-

quadratic-Gaussian controller is revisited and adapted, the concept of a watermarked input is described, and
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properties of the failure detector are defined. In the next section, a replay attack model is provided and

the class of systems incapable of detecting such attacks are identified. In the following section, a systematic

method to compute the watermarking signal is given. Specifically, a Neyman-Pearson detector is derived,

and optimal statistical properties of the watermark input are obtained subject to some upper bound on

the total cost of control. Due to the impossibility of computing the detection probability in closed form,

only a relaxed version of the original optimization problem is solved. While the solution provided is near

optimal with respect to the originally formulated optimization problem, the rest of the article still refers to

the solution as the optimal watermark for easier reading. An algorithm to generate this input is also given.

Afterwards a numerical example is provided to compare probability of detection with the probability of false

alarm as well as the cost of control. The final section concludes the article, with some directions for future

work. The appendix contains some proofs that would otherwise interrupt the flow of the article.

System Description

The physical watermarking strategy is given for a class of general control systems. The control system

is modeled as a linear, time invariant (LTI) system, the state dynamics of which are given by

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn is the vector of state variables at time k, uk ∈ Rp is the control input, and wk ∈ Rn is the

process noise at time k. wk is assumed to be an i.i.d. Gaussian process with wk ∼ N (0, Q). Since the control

system usually operates for an extended period of time, it is assumed that the system starts at time −∞.

A sensor suite monitors the system described in (1). At each step, all the sensor readings are collected

by a base station. The observation equation can be written as

yk = Cxk + vk, (2)

where yk ∈ Rm is a vector of measurements from the sensors and vk ∼ N (0, R) is i.i.d. measurement noise

independent of wk. It is assumed that (A,B) is stabilizable and (A,C) is detectable.

It is assumed that the system operator wants to minimize the infinite-horizon linear-quadratic-Gaussian
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(LQG) cost

J = lim
T→∞

E
1

2T + 1

[
T∑

k=−T

(
xTkWxk + uTk Uuk

)]
, (3)

where W,U are positive definite matrices. Since the separation principle holds in this case, the optimal

solution of (3) is a combination of the Kalman filter and LQG controller [15]. The Kalman filter provides

the optimal state estimate x̂k. Since the system is assumed to start at −∞, the Kalman filter converges to

a fixed gain linear estimator

x̂k+1|k = Ax̂k +Buk, x̂k = x̂k|k−1 +Kzk. (4)

where zk , yk − Cx̂k|k−1 is the residue vector and the Kalman gain K is given by

K , PCT
(
CPCT +R

)−1
, (5)

where P is the solution of the Riccati equation

P = APAT +Q−APCT (CPCT +R)−1CPAT . (6)

The estimation error at time k is defined to be ek = xk − x̂k.

The LQG controller is a fixed gain linear controller based on the optimal state estimate x̂k. Specifically,

u∗k = Lx̂k, (7)

where u∗k is the optimal control input. The control gain matrix L is defined to be

L , −
(
BTSB + U

)−1
BTSA, (8)

where S satisfies the Riccati equation

S = ATSA+W −ATSB
(
BTSB + U

)−1
BTSA. (9)

Consider the case where, instead of directly applying the optimal LQG control u∗k to the physical

system, a physical watermarking scheme is used, in which the true control input uk is given by

uk = u∗k + ζk, (10)

where u∗k is the optimal LQG control and ζk is the watermark signal. The watermark signal {ζk} is assumed to

be a p−dimensional stationary zero-mean Gaussian process independent from the noise processes {wk}, {vk}.
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Define the autocovariance function Γ : Z→ Rp×p to be

Γ(d) , Cov(ζ0, ζd) = Eζ0ζTd . (11)

In this article, the watermark is assumed to be generated by a Hidden-Markov Model (HMM)

ξk+1 = Ahξk + ψk, ζk = Chξk, (12)

where ψk ∈ Rnh , k ∈ Z is a sequence of i.i.d. zero-mean Gaussian random variables with covariance Ψ, and

ξk ∈ Rnh is the hidden state. To make {ζk} a stationary process, the covariance of ξ0 is assumed to be the

solution of the following Lyapunov equation

Cov(ξ0) = Ah Cov(ξ0)ATh + Ψ.

All the matrices are of proper dimensions.

Remark 1. It is worth noticing that {ζk} is completely described by its finite dimensional distribution and

hence the autocovariance function Γ. However, the watermarking signal is restricted to be generated from an

HMM since any autocovariance function Γ can be approximated by an HMM, given that the dimension nh

of the hidden state is large enough. On the other hand, the HMM is easy to implement if nh is small, which

is the case for the optimal watermarking signal, as is illustrated later by Theorem 6.

To ensure the freshness of the watermark signal, Ah is assumed to be strictly stable, which implies

that the correlation between the current watermark signal ζk and the future watermark signal ζk′ decays

to 0 exponentially when k′ − k → ∞. The spectral radius of Ah is denoted as ρ(Ah) < 1. In this article,

it is assumed that the watermark signal is chosen from a Hidden-Markov Model with ρ(Ah) ≤ ρ, where

ρ < 1 is a design parameter. A value of ρ close to 1 gives the system operator more freedom to design the

watermark signal, while a value of ρ close to 0 improves the freshness of the watermark signal by reducing

the correlation of ζk at different time steps. To simplify notations, define the feasible set G(ρ) as

G(ρ) = {Γ : Γ is generated by an HMM (12) with ρ(Ah) ≤ ρ}. (13)

Remark 2. Since it is assumed that (A,B) is stabilizable and (A,C) is detectable, the closed-loop system

is stable regardless of the watermark signal. Furthermore, by the separation principle, the Kalman filter is
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the optimal filter regardless of the watermark signal ζk. However, the addition of ζk incurs an LQG control

performance loss and the control input uk is not optimal. The necessity of adding the watermark signal ζk is

illustrated later in Theorem 1. Conceptually, if the system is under normal operation, then the effect of the

watermark signal ζk can be found in the sensor measurements yk. The presence of the watermark is possibly

lost when the system is malfunctioning or under attack, which can be detected by the failure detector.

If no watermark signal is present, that is if ζk = 0, then the optimal objective function J∗ given by

the Kalman filter and LQG controller is

J∗ = tr (SQ) + tr
[(
ATSA+W − S

)
(P −KCP )

]
. (14)

A failure detector is used to detect abnormality of the system. In this article, the failure detector is

assumed to trigger an alarm at time k if and only if the condition,

g(zk, ζk−1, ζk−2, . . .) ≥ η, (15)

is met where g(zk, ζk−1, ζk−2, . . .) is a continuous real valued function of zk, ζk−1, ζk−2, . . . and η is the

threshold, which is a design parameter of the system. Under normal operation, denote the probability of

false alarm to be α, defined as

α , P (g(zk, ζk−1, ζk−2, . . .) ≥ η). (16)

False alarms usually occur with low probability for practical systems. When the system is operating normally,

zk is a stationary process and hence α is a constant.

Remark 3. A widely used failure detector is the χ2 detector ([16], [17]), which satisfies

g(zk, ζk−1, ζk−2, . . .) = zTk (CPCT +R)−1zk.

Fig 1 shows the system diagram described in this section.

Attack Model

In this section, a model for a replay attack motivated by Stuxnet is given. To cause physical damage,

a first version of Stuxnet implements control logic to increase pressure in the centrifuge while a second version
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of the worm varies rotor speeds. To prevent detection in the first scenario, Stuxnet replayed previous sensor

outputs, recorded prior to inserting harmful control inputs, to the SCADA system [1]. Since the system was

in steady state, outputs from the past, collected in steady state, were statistically identical to outputs under

normal operation, and as such were not detected. Motivated by Stuxnet, the following replay attack model

is considered in this article.

Attacker’s Knowledge and Resources

The adversary is first described through its knowledge and available resources.

1. The attacker has knowledge of all real time sensor measurements. In particular, he knows the true

sensor outputs yk for all k.

2. The attacker can violate the integrity of all sensor measurements. Specifically, he can modify the true

sensor signals yk to arbitrary sensor signals yvk .

Remark 4. The attack on the sensors can be carried out by breaking the cryptography algorithm.

Another way to perform an attack, which is potentially much harder to defend, is to use physical

attacks. Physical attacks can violate the basic properties of secrecy, integrity and availability without

the need to attack the cyber part of the system. Consider for example a temperature sensor. Secrecy,

integrity and availability of its sensing data can be affected by placing a sensor nearby, affecting the

local temperature around the sensor, and enclosing the sensor with a metal cover respectively. In

addition, the insider threat is critical in large infrastructures, as these systems usually involve many

employees. These kinds of attacks may be easy to carry out when sensors are spatially distributed in

remote locations.

3. The attacker has access to a set of external actuators with control matrix Ba ∈ Rn×pa and can thus

insert an external input Bauak where uak ∈ Rpa is the control input. Moreover, assuming that uak is

intelligently chosen, the set of actuators Ba allows the adversary to achieve a malicious objective, for

instance causing physical damage to the plant.

Remark 5. The attacker could inject the external control input by controlling a subset of actuators of
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the system and/or deploying its own actuators. For example, to change the temperature distribution

in a building, the attacker could take control of the HVAC (heating, ventilation, and air conditioning)

system, deploy heaters of its own, or even commit arson.

4. The attacker does not need to have full knowledge of the system parameters, namely theA,B,C,Q,R,K,L

matrices and the Γ function. However, the attacker has enough knowledge of the system model to de-

sign an input uak ∈ Rpa , which may achieve its malicious objective such as physically damaging the

plant.

Attack Strategy

Given the adversary’s knowledge and resources, the following attack strategy is considered.

1. The attacker records a sequence of sensor measurements from time −T to time −1, where T is a large

enough number to ensure that the attacker can replay the sequence later for an extended period of

time.

2. Starting at time 0 to time T − 1, the attacker modifies the sensor signals to yvk , which is the same as

the measurements recorded by the attacker at time k − T . In other words,

yvk = yk−T , 0 ≤ k ≤ T − 1.

Remark 6. For simplicity, the time that the replay starts is denoted as time 0. In reality, the attacker

can freely choose the starting time, which is unknown to the system operator.

3. Starting at time 0, the attacker injects an external control input Bauak, where uak ∈ Rpa is the control

input and Ba ∈ Rn×pa denotes its direction.

Remark 7. When the system is under attack, the controller cannot perform closed loop control since

the true sensory information is not available. Therefore, control performance of the system cannot be

guaranteed during the attack. In fact, the attacker can inject a bias on the state of the physical system

along its controllable subspace, which is the column space of [Ba, ABa, . . . , An−1Ba]. The only way to

counter this attack is to detect its presence.
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System Model Under Attack

To simplify notations, time-shifted variables,

x̂vk|k−1 , x̂k−T |k−T−1, z
v
k = zk−T , ζ

v
k = ζk−T , 0 ≤ k ≤ T − 1, (17)

are defined. During the replay (0 ≤ k ≤ T − 1), the system dynamics changes to

xk+1 = Axk +Buk +Bauak + wk, yk = Cxk + vk, (18)

x̂k+1|k = Ax̂k +Buk, x̂k = x̂k|k−1 +K
(
yvk − Cx̂k|k−1

)
, (19)

uk = Lx̂k + ζk, zk = yvk − Cx̂k|k−1. (20)

Notice that the fake measurement yvk is used instead of yk for calculating the state estimate and residue. In

addition, the probability of detection at time k is defined to be βk given as

βk , P (g(zk, ζk−1, ζk−2, . . .) ≥ η), 0 ≤ k ≤ T − 1. (21)

Fig 2 shows the diagram of the control system under attack.

The following theorem characterizes the feasibility of the replay attack in the absence of the watermark

signal ζk, which illustrates the necessity of the physical watermark.

Theorem 1. Suppose ζk = 0 for all k. If A , (A+BL)(I −KC) is stable, ρ((A+BL)(I −KC)) < 1, then

the detection rate βk of all detectors g converges to the false alarm rate α during the attack, that is,

lim
k→∞

βk = α. (22)

On the other hand, if A is strictly unstable and g satisfies

lim
||z||→∞

g(z, 0, 0, . . .) =∞, (23)

for some norm || · ||, then the detection rate βk converges to 1, that is,

lim
k→∞

βk = 1. (24)

Proof. Part of the proof is reported in [13]. However, for the sake of completeness, the whole proof is included

here. Manipulating (17)-(20) yields

x̂k+1|k = Ax̂k|k−1 + (A+BL)Kyvk +Bζk (25)
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x̂vk+1|k = Ax̂vk|k−1 + (A+BL)Kyvk +Bζvk (26)

zk+1 = zvk+1 − CAk+1
(
x̂0|−1 − x̂v0|−1

)
− C

k∑
i=0

Ak−iB (ζi − ζvi ) . (27)

If A is stable and ζk = ζvk = 0, then the residue zk of the system under the replay attack converges to

the residue zvk of the virtual system, which is essentially zk−T . Hence,

lim
k→∞

βk = lim
k→∞

P (g(zk, 0, 0, . . .) ≥ η) = P (g(zvk , 0, 0, . . .) ≥ η) = P (g(zk−T , 0, 0, . . .) ≥ η) = α.

On the other hand, if A is strictly unstable, the second term on the RHS (right hand side) of (27) goes to

infinity almost surely. Hence, if g(z, 0, 0, . . .)→∞ when ||z|| → ∞,

lim
k→∞

βk = lim
k→∞

P (g(zk, 0, 0, . . .) ≥ η) = 1,

which concludes the proof.

Remark 8. Notice that the stability of the “healthy” system depends only on the A + BL and A − KCA

matrices, not on A. Hence, it is entirely possible that the closed-loop system is stable while A is unstable.

As seen from (25) and (26), the stability of A implies that the open-loop cyber system, consisting of the

controller and estimator, is stable. In the one dimensional case, the stability of A is easy to analyze since

A = (A + BL)(A − KCA)A−1. Thus, due to the stability of A + BL and A − KCA, A is stable if A is

unstable. Such analysis does not hold for higher dimensional systems since the product of stable matrices

may not be stable.

Remark 9. Additionally, observe that Theorem 1 considers the alarm rate βk when k goes to infinity while

in the attack model it is assumed that the replay is performed from time 0 to time T − 1. However, since

T is assumed to be large and βk typically converges quickly, as is illustrated by the numerical examples, the

asymptotic performance of βk serves as an indicator of the detection performance of the system.

Based on Theorem 1, if A is strictly unstable, then the attacker can be detected efficiently as the

detection rate βk converges to 1. However, if A is stable, then the attacker can perform the replay attack

for an extended period of time given that the false alarm rate α is insignificant, which implies that the

system is not resilient to this type of attack. In that case, one possible countermeasure is to redesign the
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estimation and control gain matrices K and L so that the closed-loop system is stable, while enforcing A

strictly unstable. However, this approach is not always desirable, since the control and estimation gain

matrices are usually designed to satisfy certain safety and performance constraints and hence cannot be

changed arbitrarily. In these scenarios, instead of redesigning K and L, the watermark signal can be used

to enable intrusion detection.

Watermark Design and Detection

This section is devoted to developing a design methodology for the watermark signal and the anomaly

detector. To begin, the following assumption is made on the control system.

Assumption 1. A is stable. That is, ρ((A+BL)(I −KC)) < 1.

Throughout this section, it is assumed that A is stable, since otherwise the watermark signal would

be unnecessary as a consequence of Theorem 1. To simplify notations, define the symmetric part of a matrix

X as

sym(X) ,
X +XT

2
. (28)

LQG Performance Loss

The addition of noisy watermarks on top of optimal LQG inputs naturally degrades the performance

of the system as described by the LQG cost. The following theorem provides the LQG control performance

loss incurred by the watermark signal.

Theorem 2. The LQG performance of the system described by (1), (2), (4) and (10) is given by

J = J∗ + ∆J, (29)

where J∗ is the optimal LQG cost without the watermark signal and

∆J = tr

{
UΓ(0) + 2U sym

[
L

∞∑
d=0

(A+BL)dBΓ(1 + d)

]}
+ tr

[
(W + LTUL)Θ1

]
, (30)

where

Θ1 , 2

∞∑
d=0

sym
[
(A+BL)dL1(Γ(d))

]
− L1(Γ(0)),
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and L1 : Cp×p → Cn×n is a linear operator defined as

L1(X) =

∞∑
i=0

(A+BL)iBXBT ((A+BL)i)T = (A+BL)L1(X)(A+BL)T +BXBT .

Remark 10. While the expression for ∆J is complicated, it is linear with respect to the autocovariance func-

tions Γ(d). This linearity enables the optimization in the frequency domain, as is illustrated in Theorem 6.

Optimal Detector

This subsection derives the asymptotically optimal detector. As seen from Fig 1, the detector has

real time knowledge of the residue zk, obtained from the estimator, as well as real time knowledge of the

trajectory of the watermark, {ζk}. Define the covariance of the residue zk of the healthy system to be

P , CPCT +R. (31)

For the “healthy” system, zk is Gaussian distributed with mean 0 and covariance P.

By (27), for the system under the replay attack

zk+1 = −CAk+1
(
x̂0|−1 − x̂v0|−1

)
− C

k∑
i=0

Ak−iBζi + C

k∑
i=0

Ak−iBζvi + zvk+1. (32)

The first term on the RHS of (32) converges to 0 since A is stable. The second term is a function of the

watermark signal, which is generated and thereby known by the control system and the failure detector. The

third and fourth terms are independent from each other since zk is the residue vector of the Kalman filter.

Further define

µk , −C
k∑

i=−∞
Ak−iBζi, (33)

and

Σ , lim
k→∞

Cov

[
C

k∑
i=0

Ak−iBζvi

]
= Cov

[
C

∞∑
i=0

AiBζ−i

]
. (34)

Expanding the RHS of (34),

Σ = 2

∞∑
d=0

C sym
[
AdL2(Γ(d))

]
CT − CL2(Γ(0))CT , (35)

where L2 : Cp×p → Cn×n is a linear operator on the space of p× p matrices, which is defined as

L2(X) ,
∞∑
i=0

AiBXBT (Ai)T = AL2(X)AT +BXBT .
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Therefore, zk converges to a Gaussian with mean µk−1 and covariance P+Σ. As a result, the null hypothesis

is

H0 : the residue zk follows a Gaussian distribution N0(0,P).

The alternative hypothesis is

H1 : the residue zk follows a Gaussian distribution N1(µk−1,P + Σ).

By the Neyman-Pearson lemma [18], the optimal detector is given by the Neyman-Pearson detector as

discussed in Theorem 3.

Theorem 3. The optimal Neyman-Pearson detector rejects H0 in favor of H1 if

gNP (zk, ζk−1, ζk−2, . . .) = zTk P−1zk − (zk − µk−1)T (P + Σ)−1(zk − µk−1) ≥ η. (36)

Otherwise, hypothesis H0 is accepted.

To characterize the performance of the detector, ideally the asymptotic detection rate limk→∞ βk or

expected time to detection is considered. However, the detection rate and expected time to detection involve

integrating a Gaussian distribution, which usually does not have an analytical solution. In this article, the

Kullback-Leibler (KL) divergence, which measures the “distance” between the two distributions, is used

to characterize the detection performance. This choice rests on the observation that as the KL divergence

between two distributions increases, the distributions become, roughly speaking, easier to distinguish. For

details, see “The Kullback-Liebler Divergence.” The KL divergence of the two Gaussian distributions in H0

and H1 is given by the next theorem

Theorem 4. The expected KL divergence of distribution N1 and N0 is

E DKL(N1‖N0) = tr(ΣP−1)− 1

2
log det(I + ΣP−1). (37)

Furthermore, the expected KL divergence satisfies the inequality

1

2
tr(ΣP−1) ≤ E DKL(N1‖N0) ≤ tr(ΣP−1)− 1

2
log
[
1 + tr(ΣP−1)

]
, (38)

where the upper bound is tight if C is of rank 1.
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It is worth noticing that the expected KL divergence is a convex function of Σ. However, both the

upper and lower bound of the expected KL divergence are monotonically increasing with respect to tr(ΣP−1),

which is linear in Σ.

Optimal Watermark Signal

This subsection derives the optimal watermark signal. Ideally, the following optimization problem

should be solved.

maximize
Γ(d)∈G(ρ)

E DKL(N1‖N0)

subject to ∆J ≤ δ, (39)

where δ > 0 is a design parameter.

However, it is computationally hard to solve this maximization problem since the expected KL diver-

gence is not a concave function of Γ(d). Hence, the ensuing optimization problem is solved.

maximize
Γ(d)∈G(ρ)

tr(ΣP−1)

subject to ∆J ≤ δ, (40)

Notice that the expected KL divergence is relaxed to tr(ΣP−1), using the upper and lower bound

derived in Theorem 4. Furthermore, if C is of rank 1, then by Theorem 4, optimizing tr(ΣP−1) is equivalent

to optimizing the expected KL divergence. For general cases, the optimality gap can be quantified using the

upper and lower bound.

Although Σ and ∆J are linear functionals of Γ, convex optimization techniques cannot be directly

applied to solve (40), since Γ is in an infinite dimensional space. As a result, (40) is transformed into the

frequency domain. Before continuing on, the following definition is needed.

Definition 1. ν is a positive Hermitian measure of size p × p on the interval (−0.5, 0.5] if for a Borel set

SB ⊆ (−0.5, 0.5], ν(SB) is a positive semidefinite Hermitian matrix with size p× p.

The following theorem establishes the existence of a frequency domain representation for Γ(d).
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Theorem 5 (Bochner’s Theorem [19, 20]). Γ(d) is the autocovariance function of a stationary Gaussian

process {ζk} if and only if there exists a unique positive Hermitian measure ν of size p× p, such that

Γ(d) =

∫ 1/2

−1/2

exp(2πjdω) d ν(ω). (41)

d ν(ω) can be interpreted as the discrete-time Fourier transform of the function Γ(d). In fact, if ν(ω)

is absolutely continuous with respect to the Lebesgue measure, then

d ν(ω) = f(ω) dω,

and

Γ(d) =

∫ 1/2

−1/2

exp(2πjdω)f(ω) dω,

where f is a mapping from (−0.5, 0.5] to the set of positive semidefinite Hermitian matrices. f is exactly

the “entrywise” Fourier transform of Γ(d).

By the fact that Γ(d) is real, the Hermitian measure ν satisfies the following property, which can be

applied to the Fourier transform of the real valued signals.

Proposition 1. Γ(d) is real if and only if for all Borel-measureable sets SB ⊆ (−0.5, 0.5],

ν(SB) = ν(−SB). (42)

By (42), (41) can be simplified as

Γ(d) = 2Re

(∫ 1/2

0

exp(2πjdω) d ν(ω)

)
. (43)

Theorem 6. The optimal solution (not necessarily unique) of (40) is

Γ∗(d) = 2ρ|d|Re [exp(2πjdω∗)H∗] , (44)

where ω∗ and H∗ are the solution of the ensuing optimization problem.

maximize
ω,H

tr
[
F2(ω,H)CTP−1C

]
subject to F1(ω,H) ≤ δ, 0 ≤ ω ≤ 0.5,

H Hermitian and Positive Semidefinite, (45)
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where the function F1 is defined as

F1(ω,H) , tr [UΘ2] + tr
[
(W + LTUL)Θ3

]
, (46)

Θ2 ,2Re
{

2 sym
(
sρL[I − sρ(A+BL)]−1BH

)
+H

}
,

Θ3 , 2Re
{

2 sym
[
(I − sρ(A+BL))−1L1(H)

]
− L1(H)

}
,

and s , exp(2πjω).

The function F2 is defined as

F2(ω,H) , 2Re
{

2 sym
[
(I − sρA)−1L2(H)

]
− L2(H)

}
. (47)

Furthermore, one optimal (not necessarily unique) H∗ of Problem (45) is of the form

H∗ = hhH , (48)

where h ∈ Cp. The corresponding HMM is given by

ξk+1 = ρ

 cos 2πω∗ − sin 2πω∗

sin 2πω∗ cos 2πω∗

 ξk + ψk, ζk =

[
√

2hr
√

2hi

]
ξk, (49)

where hr, hi ∈ Rp are the real and imaginary part of h respectively and Ψ = Cov(ψk) = (1− ρ2)I.

Remark 11. By (44), Γ∗(d) can be seen as a sinusoidal signal with a decay factor ρ, where ω∗ and H∗ can be

interpreted as the optimal frequency and direction respectively. Since F1 and F2 are linear with respect to H,

when ω is fixed, (45) is a semidefinite programing problem and hence can be solved efficiently. Therefore, (45)

can be solved in two steps by first calculating the optimal signal direction for every frequency 0 ≤ ω ≤ 0.5 and

then searching over all possible frequencies ω. In practice, (45) can be solved for enough sample frequencies

to obtain a near optimal watermarking signal.

It is worth noticing that regardless of the dimensions of the physical system n or the control input p,

the dimension of the hidden ξk is always 2, which is desirable from a computational perspective when dealing

with a high-dimensional linear system.

21



Numerical Example

This section illustrates the utility of the watermarking scheme by analyzing detection performance

on a control system, with parameters

A =

 1 1

0 1

 , B =

 0

1

 , C =

[
1 0

]
. (50)

The cost matrices in this system, W and U , are equal to the identity. The covariance matrices, Q

and R, are equal to 0.8 times the identity and the identity respectively. As a result, the eigenvalues of

A are -0.339 and -0.105. Consequently, A is stable, thus motivating the use of a watermark signal for

detection. Two watermarking designs are analyzed. First, a stationary watermark is generated using (49)

where ρ = 0.6. In the second case, an i.i.d. Gaussian process is considered, similar to the design presented

in [13, 14]. Designing a stationary Gaussian watermark requires solving a semidefinite program for a set of

frequencies sampled in 0 ≤ ω ≤ 0.5. A step size of 0.01 is chosen for this system, which requires solving 51

semidefinite programs. On a Macbook Pro with a 2.4 GHz processor, solving all 51 semidefinite programs

takes 12.9 seconds using CVX [21, 22].

First, the asymptotic detection rate limk→∞ βk versus the false alarm rate α for each design is plotted

in Fig 3. The additional cost ∆J imposed by the watermark is 10 for each design, roughly 40 percent of

the optimal cost J∗ = 23.1. The relationship between the asymptotic detection rate and false alarm rate is

again considered in Fig 4. Here, α is chosen to be less than 0.1, which is typical for real systems, where the

cost considerations of investigating possible attacks make it undesirable to have frequent false alarms during

normal operation. The stationary watermarking design offers a visible improvement in the asymptotic rate

of detection over an i.i.d. design. The percent improvement in asymptotic detection rate limk→∞ βk of the

stationary Gaussian design with ρ = 0.6 over the i.i.d. approach is explicitly examined in Fig 5 for α ≤ 0.1.

It can be seen that the stationary watermark achieves its best relative performance for α in this range. In

fact, a 60 percent improvement over the i.i.d. design in the asymptotic rate of detection is obtained when

α ≈ 0.005 and ρ = 0.6.

Fig 6 and Fig 7 illustrate the tradeoff between the asymptotic detection rate limk→∞ βk and the LQG

cost ∆J for ∆J ≤ 100 and ∆J ≤ 20 respectively. For this simulation, the false alarm rate α is fixed to be
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0.02. For practical systems, ∆J needs to be carefully chosen to balance the control cost and the detection

performance.

Fig 8 shows the detection rate as a function of time k where ∆J = 10 for the watermarking approaches

and α = 0.02. In this scenario, detection performance in the absence of physical watermarking is also

considered. For this case, a χ2 detector is used. It is assumed that the attacker gathers measurements from

−50 ≤ k ≤ −1 and replays these measurements from 0 ≤ k ≤ 49. For all chosen designs, the probability of

detection quickly rises to a maximum detection rate at k = 0 due to a mismatch between the expected and

received measurements at the beginning of a replay attack. However, since A is stable, the detection rate

quickly decreases back to false alarm rate without watermarking. Meanwhile, in the watermarking strategies

βk converges quickly. As a result, it is reasonable to design the watermark signal to optimize the asymptotic

detection performance.

Finally, Fig 9 examines the relationship between the expected time of detection and the additional

LQG cost ∆J when α = 0.02. In the absense of physical watermarking, which corresponds to ∆J = 0, the

expected time of detection is roughly given by k = 34.3. Watermarking strategies can significantly reduce the

time of detection. For instance, for ∆J = 10, the expected time of detection for the stationary watermark

is k = 5.82 and the expected time of detection for the i.i.d. watermark is k = 6.27.

Conclusion

In this article, a replay attack against control systems was defined. Specifically, the adversary could

record a sequence of sensor measurements and later deliver these previous outputs to the system operator. If

the system is operating in steady state, it was shown that the replayed outputs are statistically identical to

the outputs of the system under normal operation. It was noted that for some control systems, the classical

estimation, control, and failure detection strategy is not resilient to a replay attack. In these systems,

an authenticating watermarked input was super-imposed on the LQG optimal input, providing improved

detection at the expense of control performance. The watermarked input was assumed to be stationary and

Gaussian, extending previous results, which only considered the i.i.d. case. An optimal Neyman-Pearson

detector was given to determine if the system is under attack. Furthermore, a methodology to select the
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statistical properties associated with the watermark was provided based on the tradeoff between desired

detection performance and allowable control performance loss. In addition, an algorithm to generate a

watermark with these statistical properties was provided. Simulations were carried out to examine asymptotic

detection performance as a function of the rate of false alarms, asymptotic detection performance as a

function of cost to the system, detection performance as a function of time, and expected time of detection

as a function of cost. Future work consists of applying the watermarking techniques to detect other attacks,

where the adversary cannot perfectly replicate the effect of the watermark in the sensor measurements.
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Appendix

Proof of Theorem 2. The “healthy” control system follows xk+1

ek+1

 =

 A+BL −BL

0 A−KCA


 xk

ek

+

 I 0

I −KC −K


 wk

vk+1

+

 Bζk

0

 , (51)

and

uk = Lx̂k + ζk = Lxk − Lek + ζk. (52)

Since the control system is closed-loop stable, {xk}, {ek} and {uk} are all stationary Gaussian processes.

Hence,

J = E(xT1 Wx1 + uT1 Uu1) = tr(W Cov(x1)) + tr(U Cov(u1)).

By (51),

x1 = l1(w0, w−1, . . . , v0, v−1, . . . ) +

∞∑
i=0

(A+BL)iBζ−i, e1 = l2(w0, w−1, . . . , v1, v0 . . . ),

where l1 and l2 are linear functions. As a result,

u1 = l3(w0, w−1, . . . , v1, v0, . . . ) + L

∞∑
i=0

(A+BL)iBζ−i + ζ1,

where l3 is another linear function. Since the watermark signal is independent from the process noise {wk}

and sensor noise {vk},

Cov(x1) = Cov (l1(w0, w−1, . . . , v0, v−1, . . . )) + Cov

( ∞∑
i=0

(A+BL)iBζ−i

)
,

and

Cov(u1) = Cov (l3(w0, w−1, . . . , v1, v0, . . . )) + Cov

(
L

∞∑
i=0

(A+BL)iBζ−i + ζ1

)
.

By the fact that when ζk = 0, the optimal LQG cost is J∗ and

J = J∗ + ∆J,

where

∆J = tr

[
W Cov

( ∞∑
i=0

(A+BL)iBζ−i

)]
+ tr

[
U Cov

(
L

∞∑
i=0

(A+BL)iBζ−i + ζ1

)]
. (53)

Manipulating the RHS of (53) leads to (30), which finishes the proof.
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Proof of Theorem 4. By the definition of KL divergence, it is known that

DKL(N1‖N0) =
1

2
tr
[
(P + Σ)P−1

]
− m

2
− 1

2
log det

[
(P + Σ)P−1

]
+

1

2
µk

TP−1µk,

=
1

2
tr(ΣP−1)− 1

2
log det(I + ΣP−1) +

1

2
tr(µkµk

TP−1).

Take the expectation on both sides. It is easy to verify that Σ = E µkµk
T , which proves (37).

Now assume that the eigenvalues of ΣP−1 are λ1, · · · , λm. As a result,

tr(ΣP−1) =

m∑
i=1

λi,

and

log det(I + ΣP−1) =

m∑
i=1

log(1 + λi).

Since P is positive semidefinite, there exists a positive semidefinite matrix P1/2, where P1/2P1/2 = P.

Hence, ΣP−1 shares the same eigenvalues as P−1/2ΣP−1/2, which implies all λis are real and nonnegative.

As a result, by the concavity of log function, it is known that

log
[
1 + tr(ΣP−1)

]
≤ log det(I + ΣP−1) ≤ m log

(
1 +

tr(ΣP−1)

m

)
≤ tr(ΣP−1). (54)

The first inequality holds when λ1 = tr(ΣP−1) and λ2 = · · · = λm = 0. The second inequality holds when

λ1 = · · · = λm = tr(ΣP−1)/m. The third inequality uses the fact that log(1 + x) ≤ x. Combining (54) and

(37), (38) holds.

Furthermore, if C is of rank 1, then by (35),

rank(ΣP−1) ≤ rank(Σ) ≤ 1.

As a result, the first inequality of (54) is tight, which implies that the upper bound in (38) is tight.

Proof of Theorem 6. The proof is divided into steps.

Step 1 Consider another function Γ̃ and prove that this function is indeed an autocovariance function.

Define function Γ̃ : Z→ Rp×p as

Γ̃(d) , ρ−|d|Γ(d). (55)

It can be shown that Γ̃ is the autocovariance function of the stationary Gaussian distribution,

ξ̃k+1 = (Ah/ρ) ξ̃k + ψ̃k, ζ̃k = Chξ̃k,
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where Cov(ξ̃0) is the solution of the Lyapunov equation,

Cov(ξ̃0) = Ah Cov(ξ̃0)ATh + Ψ,

and {ψ̃k} is an i.i.d. zero-mean Gaussian process with covariance equals to Cov(ξ̃0)−Ah Cov(ξ̃0)ATh /ρ
2.

Step 2 Rewrite the objective function and the contraint of Problem (40) in terms of the Fourier transform ν̃

of Γ̃.

Consider a partition of [0, 1/2] into disjoint intervals I1, I2, . . . , Iq, where

Ii
⋂
Ij = ∅,

q⋃
i=1

Ii = [0,
1

2
].

Define σ as the maximum length of interval Iis. By Riemann-Stieltjes integral and Theorem 5, Γ̃(d)

can be written as

Γ̃(d) = lim
σ→0

2Re

[
q∑
i=1

exp(2πjdωi)ν̃(Ii)

]
,

where ωi ∈ Ii. By (35) and (55),

Σ = lim
σ→0

C

q∑
i=1

2Re

{
2

∞∑
d=0

sym
[
exp(2πjdωi) (ρA)

d L2(ν̃(Ii))
]
− L2(ν̃(Ii))

}
CT ,

= lim
σ→0

C

q∑
i=1

2Re
{

2 sym
[
(I − exp(2πjωi)ρA)−1L2(ν̃(Ii))

]
− L2(ν̃(Ii))

}
CT ,

= lim
σ→0

C

q∑
i=1

F2(ωi, ν̃(Ii))C
T .

Notice that the order of summation and limit changes, which is feasible as A is stable. As a result,

tr(ΣP−1) = lim
σ→0

q∑
i=1

tr
[
F2(ωi, ν̃(Ii))C

TP−1C
]
. (56)

Similarly,

∆J = lim
σ→0

q∑
i=1

F1(ωi, ν̃(Ii)). (57)

Step 3 Prove that the upper bound for Problem (40) is the optimal value of the objective function of Prob-

lem (45).

Since ∆J and Σ are always nonnegative, for all ω ∈ [0, 1/2] and H positive semidefinite,

F1(ω,H) ≥ 0, F2(ω,H) ≥ 0. (58)
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Suppose that the optimal solution of (45) is ω∗, H∗ and the optimal value of the objective function is

ϕ. Since F1 and F2 are linear with respect to H, it can be shown that

F1(ω∗, H∗) = δ.

Hence, for all ν̃(Ii) and ωi ∈ [0, 1/2]

tr
[
F2(ωi, ν̃(Ii))C

TP−1C
]
≤ ϕ

δ
F1(ωi, ν̃(Ii)). (59)

By (56)-(59), for all watermark signals {ζk} with ∆J ≤ δ,

tr(ΣP−1) ≤ ϕ.

Step 4 Prove that the upper bound is tight.

Consider the point mass measure ν̃∗,

ν̃∗(SB) = H∗ I{ω∗∈SB} +H∗ I{−ω∗∈SB},

where I is the indicator function. It can be shown that Γ∗(d) is generated by ν̃∗. Furthermore, by (56)

and (57), the corresponding ∆J = δ and tr(ΣP−1) = ϕ. Hence, Γ∗(d) achieves the upper bound of

Problem (40). Now it only remains to prove that Γ∗(d) can be generated by an HMM with ρ(Ah) ≤ ρ.

Notice that the boundary of the cone of positive semidefinite Hermitian matrices is of the form hhH .

Furthermore, since F1 and F2 are linear with respect to H, for fixed ω, the optimization problem (45)

attains its maximum on the boundary of the cone (through it is possible that an interior point is also

optimal), which proves (48). As a result,

H∗ = (hr + jhi)(h
T
r − jhTi ) = hrh

T
r + hih

T
i − j(hrhTi − hihTr ).

It can be shown that the watermark signal {ζk} generated by the HMM (49) follows (44), which proves

that (44) is the optimal autocovariance function for Problem (40).
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Figure 1: Diagram of the control system under normal operation. In this system, no adversary is present and

as a result, the watermark input is present in the sensor outputs. By confirming the presence of a watermark

in the sensor measurements, the failure detector can verify that the system is not under a replay attack.
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Figure 2: Diagram of the control system under attack. Here, the adversary performs a replay attack, provid-

ing replayed outputs yvk to the system operator while injecting a potentially damaging input to the system.

When under attack, the watermark is asymptotically independent of the replayed sensor measurements. The

failure detector leverages this independence to determine if there has been a replay attack.
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Figure 3: limk→∞ βk as a function of α for a stationary watermark with ρ = 0.6, and an independent and

identically distributed (i.i.d.) watermark with ∆J = 10. This figure shows that the use of a stationary

gaussian watermark with ρ = 0.6 visibly increases asymptotic detection performance as the rate of false

alarm varies, providing improvements over the i.i.d. approach where ρ is equivalently 0. With respect to the

optimization problem (40), increasing ρ corresponds to increasing the set of feasible autocovariance functions

for the stationary watermark.
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Figure 4: limk→∞ βk as a function of α for α ≤ 0.1 and ∆J = 10. It is desirable to implement detectors

with infrequent false alarms in real life systems and consequently detection performance in this region of

operation is essential. The stationary watermarking scheme with ρ = 0.6 obtains its best relative performance

in comparison to independent and identically distributed (i.i.d.) watermarking schemes when the probability

of false alarm approaches 0.
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Figure 5: Percentage improvement in limk→∞ βk over the independent and identically distributed (i.i.d.)

design versus α for a stationary watermarking scheme with ρ = 0.6 and ∆J = 10. This figure shows that

the stationary watermarking scheme with ρ = 0.6 can offer up to a 70 percent improvement in asymptotic

detection performance when the probability of false alarm is near 0
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Figure 6: limk→∞ βk versus ∆J for a stationary watermark with ρ = 0.6 and an independent and identically

distributed (i.i.d.) watermark. Here, α = 0.02. This figure shows that as more control effort is expended,

the rate of detection increases. In particular, additional linear-quadratic-Gaussian (LQG) cost corresponds

to increasing the magnitude of the watermark’s autocovariances. Through the dynamics of the system,

watermarks with larger autocovariances increase descrepances between the replayed sensor outputs and the

expected sensor outputs, thus resulting in a higher probability of detection.
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Figure 7: limk→∞ βk versus ∆J for a stationary watermarks with ρ = 0.6 and an independent and identically

distributed (i.i.d.) watermark. Here, α = 0.02 and ∆J ≤ 20, which is roughly 86% of the optimal linear-

quadratic-Gaussian (LQG) cost. It is desirable to implement a watermark with limited additional LQG cost

in real systems to maintain performance in the control system. This figure illustrates the tradeoff between

control and detection performance within this desired region of operation.
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Figure 8: βk versus time k for a stationary watermark with ρ = 0.6, an independent and identically dis-

tributed (i.i.d.) watermark, and no watermark. For watermarking schemes, ∆J = 10, and α = 0.02 for all

schemes. When the attack begins at time k = 0, the detection rate quickly increases due to a mismatch in

the expected and received measurements before converging quickly to the asymptotic detection rate. With-

out watermarking the asymptotic detection rate is the false alarm rate. Since the rate of detection quickly

converges quickly to its asymptotic value for each design, it is reasonable to design a watermark to optimize

asymptotic detection performance.
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Figure 9: Expected time of detection versus ∆J for a stationary watermark with ρ = 0.6, and an independent

and identically distributed (i.i.d.) watermark. The probability of false alarm is fixed to be α = 0.02. In the

absense of physical watermarking, which corresponds to ∆J = 0, the expected time of detection is k = 34.3.

However, physical watermarks can significantly reduce the expected time of detection. For instance, when

∆J = 10, the the expected time of detection for the i.i.d. watermark is k = 6.27 and the expected time of

detection for the stationary watermark with ρ = 0.6 is k = 5.82. Moreover, for the given range of ∆J , the

stationary watermark with ρ = 0.6 allows the detector to identify replay attacks on average earlier than in

the case of an i.i.d watermark.
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Reference Type of System Noise Attack Models Defense Mechanisms

[2] control system noisy faults filters, voting schemes,

hypothesis testing, residue

detectors

[4] static power grid noisy false data injection (sensor

attack)

residue detector

[5] static power grid noisy false data injection (sensor

attack)

residue detector

[6] control system none arbitrary sensor and

actuator attacks

detection and identification

filters

[7] control system none arbitrary sensor and

actuator attacks

optimization decoder

[8] wireless control

network

none malicious nodes with

arbitrary state attacks

intrusion detector, output

estimation

[9] distributed network none malicious nodes with

arbitrary state attacks

combinatorial estimator

[10] consensus network none malicious or faulty nodes detection and identification

filters

[11] control system noisy dynamic false data

injection (sensor attack)

residue detector

[12] sensor network noisy dynamic false data

injection (sensor attack)

residue detector

[13, 14] control system noisy replay attack physical watermarking, χ2,

correlation detectors

Table 1: A summary of related works in control system security. The works are characterized by the system

models considered, adversary attack models, and defense mechanisms to detect and identify adversaries.

Observe that this table does not exhaustively summarize all contributions in control system security and

apologies are extended for any omissions
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Sidebar 1: The Stuxnet Attack

Stuxnet was a complex malware that infected uranium enrichment facilities in Iran, reportedly caus-

ing damage to approximately 1,000 centrifuges at these plants [S1]. From a cyber perspective, Stuxnet was

sophisticated, exploiting four previously unknown or zero-day Microsoft Windows vulnerabilities. Addition-

ally, Stuxnet used the first known programmable logic controller (PLC) rootkit, malicious stealthy code

injected into controllers, which can hide its own existence [S2]. Moreover, to reduce the chance of being

detected, Stuxnet was signed by two stolen certificates from chip manufacturers Realtek and JMicron [S3].

The attack itself was targeted with the worm designed for local distribution, mainly through USB sticks or

local networks. While Stuxnet eventually reached 100,000 computer systems, only specific controllers were

targeted by the malware [S4]. In particular, Stuxnet targeted PLCs manufactured by Siemens and installed

malicious code only after checking that model numbers, configuration details, and program code matched

its target. In the first version of Stuxnet, gas pressure of uranium hexafluoride in the centrifuge is increased,

which can cause stress to rotors. In a second version, the worm varies rotational speeds. When operating

near certain critical speeds or harmonics, this attack can cause the rotor to vibrate or even break [1].

Another question to consider is how Stuxnet evaded detection from verification systems, which measure

the system state. According to [1], rotor speed is not a controlled variable and is unlikely to be measured.

Furthermore, a monitoring application would have seen rotor speed values prior to an attack since legitimate

control logic reading the frequency converter was suspended during the second version of Stuxnet. In the

first version, legitimate controller code continued to run but was isolated from the true dynamics of the

system. Stuxnet intecepted all input and output signals. To cause damage, Stuxnet implemented control

logic causing pressure in centrifuges to increase. To prevent detection, Stuxnet also delivered previously

recorded measurements to the SCADA system, performing a replay attack. Replay attacks are commonly

considered in information security where adversaries masquerade as a trusted party by repeating a valid

data transmission, which they have intercepted [S5]. In information security, replay attacks are thwarted by

ensuring a message is current through session tokens or timestamps or by authenticating the sender. Since the

Stuxnet attack is linked to a physical process, as opposed to residing strictly in the cyber realm, this article

proposes a system theoretic method to verify the “freshness” of sensor outputs, physical watermarking.
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Sidebar 2: The Kullback-Liebler Divergence

The Kullback-Liebler divergence, first described in [S6], is a measure of the difference between two

distributions P1(z) and P0(z). For continuous probability density functions P1 and P0, the KL divergence

is given as

D(P1‖P0) =

∫
z

P1(z) log

(
P1(z)

P0(z)

)
dz. (S3)

It can be shown that D(P1‖P0) ≥ 0. Moreover, equality holds if and only if P1(z) = P0(z) for almost surely

all z. Thus, if the distribution P1(z) is close to P0(z), the KL divergence likely approaches 0.

The KL divergence between distributions P1 and P0 can be related to the Neyman-Pearson detector

associated with a binary hypothesis test. Here, consider P1(z) to be the distribution of the observations

z under the alternative hypothesis H1 and P0(z) to be the distribution of the observations z under the

null hypothesis H0. The optimal Neyman-Pearson detector is a threshold detector on the log likelihood

l(z) = log

(
P1(z)

P0(z)

)
(S2), where if l(z) is greater than a constant c the alternative hypothesis is chosen.

Observe that the KL divergence D(P1‖P0) satisfies

D(P1‖P0) = E[l(z)|H1]. (S4)

Thus, maximizing the KL divergence over a subset of possible distributions P1 potentially increases

the probability of an observation z such that l(z) > c, when the alternative hypothesis is true. As a result,

the probability of detection also increases. For additional discussion of the relationship between the KL

divergence and Neyman Pearson lemma, see [S7].
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