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Abstract—We study the economic impact of a potential class
of integrity cyber attacks, named false data injection attacks, on
electric power market operations. In particular, we show that
with the knowledge of the transmission system topology, attackers
may circumvent the bad data detection algorithms equipped
in today’s state estimator. This, in turn, may be leveraged by
attackers for consistent financial arbitrage such as virtual bidding
at selected pairs of nodes. This paper is a first attempt to
formalize the economic impact of malicious data attacks on
real-time market operations. We show how an attack could
systematically construct a profitable attacking strategy, in the
meantime being undetected by the system operator. Such a result
is also valuable for the system operators to examine the potential
economic loss due to such cyber attack. The potential impact of
the false data injection attacks is illustrated on real-time market
operations of the IEEE 14-bus system.

Index Terms—cyber security, state estimation, false data in-
jection attack, electricity markets, locational marginal price,
economic dispatch

I. INTRODUCTION

The electric power industry is undergoing profound changes
as our society increasingly emphasizes the importance of a
smarter grid for sustainable energy utilization [1]. Technically,
enabled by the advances in sensing, communication, and
actuation, power system operations are likely to involve more
real-time information gathering and processing devices such
as Phasor Measurement Units (PMUs) [2]. Institutionally,
the increasing presence of distributed generation resources
and flexible demand programs may lead to more integrated
SCADA and end-user networks [3].

Financially, the deregulation of electricity industry has
unbundled the generation, transmission and distribution. In
most regions, the operation of the wholesale level electric-
ity markets and the underlying physical power systems are
organized in Regional Transmission Organizations (RTOs)
such as Independent System Operators (ISO) New England,
Pennsylvania-New Jersey-Maryland (PJM) and California In-
dependent System Operator (CAISO). Market operations have
become an important part of RTOs’ responsibilities in addition
to ensuring physically secure electricity transmission services.
Given the stronger coupling among cyber components (sensors
and communication networks, in particular), physical, and
financial operations in electric power systems, smart grid of
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the future must cope with a variety of anomalies in this cyber-
physical energy system.

The primary goal of this paper is to establish an analyt-
ical framework to investigate the impact of cyber security
violations on the physical and financial operations in electric
power systems. As more and more advanced cyber compo-
nents become integrated in RTOs’ software support systems,
potential cyber-security threats also raise increasing concerns.
The measurement sensors equipped in today’s Supervisory
Control and Data Acquisition (SCADA) systems are subject
to local and remote attacks. Insider attacks to control centers
software systems are also likely to happen. Two major software
systems, called Energy Management Systems (EMS) and Mar-
ket Management Systems (MMS), used employed to support
RTOs’ physical and market operations respectively. One of
the key functions of EMS is to perform state estimation [4],
which converts field sensor measurements and other available
information into an estimate of the state of the electric power
system [4]. The estimated physical states in the system are
then processed by higher level tools in both EMS and MMS
to make operational and pricing decisions respectively. Given
the key role of state estimation in coupling the cyber layer
(field sensor measurements and communication networks) with
physical and market operations, the physical and financial risks
associated with an attack on state estimation require utmost
attention.

Recent literature has begun to assess the impact of cyber
attacks on state estimation on power system operations. In [8]
the possibility of false data injection attacks against power grid
state estimation was first conceived. By leveraging the knowl-
edge of the power system topology, it was shown that false data
injection attack can circumvent the bad data detection routine
equipped in today’s SCADA systems, therefore resulting in a
manipulated snapshot of system operating states. In [9] and
[12] two possible indices are proposed for quantifying the
required efforts to implement such a class of malicious data
attack. The proposed indices can be represented as functions
of the system topology, and they could reveal the least effort
attack while avoiding bad data alarms in SCADA system.
In [10] and [11] computationally efficient strategies have
been developed to detect these malicious data attacks against
state estimators. In [6] a four-layer conceptual framework
is proposed to assess potential impact of cyber attacks in
deregulated electricity markets.

While most literature focus on the physical impact of cyber
attacks to the power system, the potential financial risks of
such a class of cyber attack are not well understood yet
[13]. In this paper, we present a novel integrated framework
which analyzes the economic impact of malicious data attacks
against state estimators. In particular, we demonstrate how
malicious attackers could make profitable market transactions
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by compromising several line flow sensors using false data
injection attacks while going undetected. Such a class of
malicious attacks may lead to consistent financial losses to
the social welfare. By revealing such potential risks, the
central message of this paper is that besides the catastrophic
physical consequences cyber attacks may provoke, it is equally
important to prevent economic loss due to malicious attacks
in future smart grid market operations. An interdisciplinary
approach based on power engineering, control systems, and
communication can lead to the development of effective tech-
niques to prevent this grim scenario from becoming reality in
the near future. The main contributions of this paper can be
summarized as threefold:

• We formulate the problem of malicious data injection
attack against state estimation, which leads to financial
misconducts in electric power market operations.

• We provide strategies for finding undetectable and prof-
itable attacks, which can be formulated as a convex
optimization problem.

• We quantify the economic impact of such malicious data
attacks on electricity market operations using day-ahead
and ex-post real-time pricing models in today’s RTOs.

The rest of this paper is organized as follows. Section
II provides the basic overview of how deregulated electric
power markets are operated in major RTOs. The malicious data
injection attacks against state estimation is then formulated in
Section III. In Section IV we describe the attacker’s strategy
to leverage the malicious data attacks for virtual bidding trans-
actions, leading to consistent financial arbitrage between day-
ahead and ex-post real-time prices at selected pairs of nodes.
In Section V we analyze the optimal attack strategy under the
assumption that only a limited number of measurement sensors
could be compromised. In Section VII numerical examples and
an economic assessment of malicious data attacks on market
operations are provided using the standard IEEE 14-bus system
as a testbed.

II. PRELIMINARIES

In deregulated electricity markets, the nodal prices are de-
termined at the Regional Transmission Organizations (RTOs).
The electric power market consists of several forward and real-
time spot markets. In real-time spot markets, MMS calculates
the ex-post locational marginal price (LMP) based on the
actual state estimation from the SCADA system. The ex-post
LMP is the settlement price for all the market participants.
In this section we briefly introduce state estimation algorithm
in power system operations and describe the effect of state
estimation on ex-post pricing.

A. Notations

We first summarize the notations used throughout this paper
in Table I. For consistency we use superscript to indicate
the context of the used variables. For example Pg∗i denotes
the optimal generation power at bus i given by the Ex-Ante
Solution. Pgi denotes the real time generation power and P̂ gi
is the estimated real time generation power.

TABLE I
NOTATIONS

i Index for generators i
j Index for load buses j
l Index for transmission line l
k Time k
I Total number of generators
J Total number of load buses
L Total number of transmission lines

Ldj Load at bus j during run time
Pgi Generation at i during run time
x A vector consists of all Pgi and Ldj
z Collection of sensor measurements

Ci(Pgi) Generation cost of producing Pgi

Pg
min(max)
i Minimum (maximum) available power from generator i

λi Electricity price at bus i
Fl Transmission flow at line l

Fmax
l Maximum allowed transmission flow at line l

Fmin
l Minimum allowed Transmission flow at line l

B. Ex-ante Real-time Market

The ex-ante real-time market, which usually takes place
every 10 to 15 minutes prior to real time, conducts security-
constrained economic dispatch (SCED) to determine the opti-
mal power generation Pg∗i given the expected load Ld∗j . The
optimal power flow solution needs to satisfy physical security
constraints. Firstly, due to the inertia of generator, Pg∗i cannot
deviate generation capacity limits

Pgmin
i ≤ Pg∗i ≤ Pgmax

i , ∀i = 1, . . . , I.

Secondly, power flow on each transmission line cannot exceed
the transmission capacity, which implies that

Fmin
l ≤ F ∗

l ≤ Fmax
l , ∀l = 1, . . . , L.

Based on the linearized DC-power flow model, the line flow
vector is a linear function of the nodal injection vector:

F = H

[
Ld
Pg

]
, (1)

where H is the distribution factor matrix of the nodal power
injection vector [14]. For future analysis, we define the jth
column of H to be Hj .

The SCED problem solved in ex-ante market can be there-
fore expressed as follows, the result of which will be the
dispatch order given to each market participant (generator, load
serving entities, etc). Ex-ante Formulation:

minimize
Pg∗

i

I∑
i=1

Ci(Pg∗i )

subject to
I∑

i=1

Pg∗i =

J∑
j=1

Ld∗j

Pgmin
i ≤ Pg∗i ≤ Pgmax

i ∀i = 1, ..., I

Fmin
l ≤ F ∗

l ≤ Fmax
l ∀l = 1, . . . , L

C. State Estimation in Real-time Operations

Due to the stochastic nature of demand Ldj , the real
time values of Pg, Ld, F may differ from the optimal
Pg∗, Ld∗, F ∗ calculated in the ex-ante market clearing.
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Hence, measurements are necessary to estimate the real-time
state variables. For DC linearized power flow modes, the states
are typically the bus voltage phase angle θ. Given a fixed
topology and choice of slack bus, there exists a bijective
relationship between bus voltage phase angle θ and the vector
of nodal power injection x [14]. Since the LMPs are explicitly
calculated from nodal power injections, we define the states in
this paper as the vector of nodal power injection x. Because
the real-time states are typically not exactly the same as the
optimal value, we have the following equations

x = x∗ + w, F = H(x∗ + w),

where w is the deviation of run time states from the scheduled
optimal states. In this paper we will assume that w is a
Gaussian random variable with zero mean and covariance
Q. We assume that I + J + L sensors are deployed to
measure Pgi, Ldj , Fl respectively. As a result, the observation
equation can be written in the matrix form as follows:

z =

[
I
H

]
x+ e = Cx+ e, (2)

where e is the measurement error, also assumed to be Gaussian
with zero mean and covariance R.

Given z, a minimum mean square error estimator is used to
estimate the state x based on the following criterion:

x̂ = argminx̂E∥x− x̂∥22. (3)

Since we assume the observation equations and flow model
to be linear, one can prove that the solution of the minimum
mean square error estimator is given by

x̂ = (C ′R−1C)−1C ′R−1z = Pz. (4)

We also assume that a detector is used to detect abnormality
in the measurements. Let us define the residue r to be

r , z − Cx̂. (5)

We will assume the detector triggers an alarm based by
comparing the norm of r with certain threshold, i.e. an alarm
is triggered if the following event happens:

∥r∥2 = ∥z − Cx̂∥2 > threshold. (6)

D. Ex-post Market

Since the run time state variables Pg, Ld, F are different
from the dispatch level in ex-ante market, RTOs will calculate
another vector of LMPs based on the run-time data for
settlement purposes. In this paper we use the ex-post pricing
model described in detail in [5]. Let us first define the positive
congestion set to be

cl+ = {l : F̂l ≥ Fmax
l },

the negative congestion set to be

cl− = {l : F̂l ≤ Fmin
l },

and the non congestion set to be

cl0 = {l : l /∈ cl+, l /∈ cl−},

The ex-post market clearing solves the SCED in a small
range around the actual system state in order to obtain the
LMPs for settlement purposes:

Ex-post Formulation:

minimize
∆Pgi

I∑
i=1

Ci(∆Pgi + P̂ gi)

subject to
I∑

i=1

∆Pgi = 0

∆Pgmin
i ≤ ∆Pgi ≤ ∆Pgmax

i ∀i = 1, ..., I

∆Fl ≤ 0 ∀l ∈ cl+

∆Fl ≥ 0 ∀l ∈ cl−,

where ∆Pgmax
i and ∆Pgmin

i is usually chosen to be
0.1MWh and −2MWh respectively. P̂ gi is the estimated
power generation by generator i. The Lagrangian of the above
minimization problem is defined as

L =

I∑
i=1

Ci(∆Pgi + P̂ gi)− λ

I∑
i=1

∆Pgi

+
I∑

i=1

µi,max(∆Pgi −∆Pgmax
i )

+

I∑
i=1

µi,min(∆Pgmin
i −∆Pgi)

+
∑
l∈cl+

ηl∆Fl +
∑
l∈cl−

ζl(−∆Fl).

It is well known that the optimal solution of the optimization
problem must satisfy the KKT conditions. In particular, we
know that the following holds:

ηl ≥ 0, ζl ≥ 0. (7)

To simplify the notation, we define ηl = 0 if l /∈ cl+, ζl = 0
if l /∈ cl−. After solving the above optimization problem and
computing the Lagrangian multipliers λ, µi,max, µi,min, ηl, ζl,
we can define the nodal price at each load bus of the network,
given by

λj = λ+

L∑
l=1

(ηl − ζl)
∂Fl

∂Ldj
. (8)

More details of the derivation of nodal price can be found in
[4]. Now let us write (8) in a more compact matrix form. Let
us define η = [η1, . . . , ηL]

′ ∈ RL to be a vector of all ηl and
ζ = [ζ1, . . . , ζL]

′. By (1), we know that ∂Fl/∂Ldj = Hlj ,
where Hlj is the element on the lth row and jth column of
H . Hence, (8) can be simplified as

λj = λ+HT
j (η − ζ), (9)

where Hj is the jth column of H matrix. The difference of
price at two nodes j1 and j2 is given by

λj1 − λj2 = (Hj1 −Hj2)
T (η − ζ). (10)
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III. ATTACK MODEL

In this section we assume that a malicious third party wants
to attack the system and make a profit from the market,
by compromising a number of sensors and sending bogus
measurements to the RTO. We assume the attacker has the
following capabilities:

1) The attacker has full knowledge the underlying system
topology.

2) The attacker knows the optimal states Pg∗, Ld∗, F ∗

published by the RTO from the Ex-Ante market.
3) The attacker compromised several sensors and can

manipulate their readings arbitrarily. We consider two
possible scenarios:

a) The attacker has already compromised a fixed
subset of sensors. Let us define matrix Γ =
diag(γ1, . . . , γI+J+L), where γi is a binary vari-
able and γi = 1 if and only if sensor i is
compromised. Hence, the corrupted measurements
received by the RTO can be written as z′ = z+za,
where za, which lies in the column space of Γ, is
the bias introduced by the attacker.

b) The attacker can choose which sensor to compro-
mise, however due to limited resources, he can only
compromise no more than N sensors. In that case,
we can still write the corrupted measurement as
z′ = z + za. However instead of requiring za to
lies in certain subspace, we now require za to have
no more than N non-zero elements.

Based on the above assumptions, the state estimation equations
can be written as

x̂′ = Pz′ = x̂+ Pza. (11)

Thus, the new residue becomes r′ = r + (I − CP )za. By
triangular inequality,

∥r′∥2 ≤ ∥r∥2 + ∥(I − CP )za∥2.

As a result, if ∥(I − CP )∆za∥2 is small, then with a large
probability the detector cannot distinguish r′ and r. In the
limit case, if (I −CP )∆z = 0, then r′ will pass the detector
whenever r passes the detector. Based on these arguments, we
give the following definition:

Definition 1: The attacker’s input za is called ε-feasible if
∥(I − CP )za∥2 ≤ ε.

Remarks 1: ε is a design parameter for the attacker de-
pending on how subtle he wants the attack to be. An attack
with smaller ε will be more likely to be undetected by the
RTO. However, the magnitude of attacker inputs, and hence
the attacker’s ability to manipulate the state estimation, will
be limited. In the rest of the paper we will assume ε is pre-
determined by the attacker.

Besides being unnoticeable, the attack must also be prof-
itable to the attacker. In this paper, we assume that the attacker
will exploit the virtual bidding mechanism to make a profit.
In many RTOs such as ISO-New England, virtual bidding
activities are legitimate financial instruments in electricity
markets. A market participant purchase/sell a certain amount
of virtual power Po at location i in day-ahead forward market,

and will be obliged to sell/purchase the exact same amount
in the subsequent real-time market. Therefore, the attacker’s
action can be summarized as

• In day-ahead forward market, buy and sell virtual power
Po at locations j1 and j2 at price λDA

j1
, λDA

j2
, respec-

tively.
• Inject za to manipulate the nodal price of Ex-Post market.
• In Ex-Post market, sell and buy virtual power Po at

locations j1 and j2 at price λj1 , λj2 , respectively.
The profit that the attacker could obtain from this combination
of virtual trading is

Profit = (λj1 − λDA
j1 )Po+ (λDA

j2 − λj2)Po

= (λj1 − λj2 + λDA
j2 − λDA

j1 )Po

Let us define

p = λj1 − λj2 + λDA
j2 − λDA

j1 . (12)

Combined with equation (10), equation (12) can be written as

p(z′) = (Hj1 −Hj2)
T (η(z′)− ζ(z′)) + λDA

j2 − λDA
j1 .

Ideally, the attacker would like to enforce that p(z′) > 0.
However, since the system is stochastic and the z′ vector is
partially unknown to the attacker, it can only try to guarantee
that Ep(z′) > 0, i.e., the attack is profitable in the expected
sense. Such a problem is still quite hard since the relationship
between η, ζ and z′ is given by the Lagrangian multiplier
and hence implicit. As a result, Monte Carlo method may be
used in order to compute Ep(z′). In the next section, we will
exploit the structure of the Ex-Post formulation and develop
a heuristic for the attacker.

IV. SCENARIO I: PREDETERMINED SUBSET OF
COMPROMISED SENSORS

In this section, we develop a heuristic for the attacker to
find a profitable input za when the subset of compromised
sensors is fixed. We will show that such a problem can be
effectively formulated as a convex optimization problem and
solved efficiently. Let us define the set

L+ = {l : Hl,j1 > Hl,j2},

and
L− = {l : Hl,j1 < Hl,j2}.

As a result, p(z′) can be written as

p(z′) =
∑
l∈L+

(Hl,j1 −Hl,j2)(ηl(z
′)− ζl(z

′))

+
∑
l∈L−

(Hl,j2 −Hl,j1)(ζl(z
′)− ηl(z

′))

+ λDA
j2 − λDA

j1 .

(13)

By the fact that ηl(ζl) is non-negative and it is 0 if the line
is not positive (or negative) congested, we can see that the
following conditions are sufficient for p(z′) > 0

(A1) λDA
j2

> λDA
j1

.
(A2) F̂ ′

l < Fmax
l if l ∈ L−, i.e. the line is not positive

congested.
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(A3) F̂ ′
l > Fmin

l if l ∈ L+, i.e. the line is not negative
congested.

(A1) can be easily satisfied in the day-ahead market. Hence,
the attacker needs to manipulate the measurement z′ to make
sure that (A2) and (A3) hold or at least hold with a large
probability. Following such intuition, we give the following
definition:

Definition 2: An attack input za is called δ-profitable if the
following inequalities hold

EF̂ ′
l ≤ Fmax

l − δ, ∀l ∈ L−,

EF̂ ′
l ≥ Fmin

l + δ, ∀l ∈ L+,

where EF̂ ′ = F ∗ +HPza.
Remarks 2: It is worth mentioning that δ does not directly

relate to the profit (or expected profit). However, it is related
to the probability that (A2) and (A3) hold. Recall that from
the attacker’s perspective, F̂ ′ is a Gaussian random variable
with mean EF̂ ′. As a result, a large margin δ will guarantee
that with large probability (A2) and (A3) are not violated.

Therefore, the attacker’s strategy during the run time is to
find an ε feasible za such that the margin δ is maximized. The
problem can be formulated as

maximize
za∈span(Γ)

δ

subject to ∥(I − CP )za∥2 ≤ ε

EF̂ ′
l ≤ Fmax

l − δ ∀l ∈ L−

EF̂ ′
l ≥ Fmin

l + δ ∀l ∈ L+

δ > 0.

It is easy to verify that the objective function and all the
constraints are convex. Therefore the problem itself is a convex
programming problem and can be solved efficiently [16].

Remarks 3: It may happen that the above convex opti-
mization problem is infeasible. In other words, the sensors
compromised by the attacker are not sufficient to decongest
all the lines in L− and L+. In that case, we can relax the
above optimization problem by adding a penalty on those
lines that are congested in the undesirable directions. The new
formulation is as follows:

maximize
za∈span(Γ)

δ −D
l∑

l=1

βl

subject to ∥(I − CP )za∥2 ≤ ε

EF̂ ′
l ≤ Fmax

l − δ + βl ∀l ∈ L−

EF̂ ′
l ≥ Fmin

l + δ − βl ∀l ∈ L+

δ > 0

βl > 0 ∀l = 1, . . . , l,

where D > 0 is the weight of the penalty and βl is the
relaxation variable.

V. SCENARIO II: LIMITED RESOURCES TO COMPROMISE
SENSORS

In this section, we consider a scenario in which the attacker
can select the set of sensors to compromise. However, due
to limited resources, the total number of compromised sensor
cannot exceed certain threshold N . As a result, not only does
the attacker need to design an optimal input to system, but also
it need to choose the optimal set of sensors to compromise.

Following the previous argument, we can write the opti-
mization problem as

maximize
za

δ

subject to ∥(I − CP )za∥2 ≤ ε

EF̂ ′
l ≤ Fmax

l − δ ∀l ∈ L−

EF̂ ′
l ≥ Fmin

l + δ ∀l ∈ L+

δ > 0

∥za∥0 ≤ N,

where ∥ · ∥0 is the zero norm, which is defined as the number
of non-zero elements in a vector. Note that in this formulation
we do not require that za lies in the span of Γ, but instead we
require za to have no more than N non-zero elements. The
non-zero elements of za correspond to the sensors the attacker
needs to compromise.

However, the above formulation is a hard combinatorial
problem, since it involves a constraint involving the zero norm
of a vector, which is not convex. To render the problem
solvable, we resort to a convex relaxation of the original
optimization problem, using the method developed in [15].
According to this method, the L0 norm is substituted with a
weighted L1 norm, where the weights are chosen to avoid the
penalization, given by the L1 norm, of the bigger coefficients.
In that paper, the authors propose an iterative algorithm that
alternates between an estimation phase and a redefinition the
weights, based on the empiric consideration that the weights
should relate inversely to the true signal magnitudes. The
resulting algorithm is composed of the following 4 steps:

1) Set the iteration count c to zero and set the weights
vector to w0

i = 1 for i = 1, ...., I + J + L
2) Solve the weighted L1 minimization problem

maximize
za

δ

subject to ∥(I − CP )za∥2 ≤ ε

EF̂ ′
l ≤ Fmax

l − δ ∀l ∈ L−

EF̂ ′
l ≥ Fmin

l + δ ∀l ∈ L+

δ > 0∑
i

|zai wc
i | ≤ N,

Let the solution be za,c1 , . . . , za,cI+J+L.
3) Update the weights

wc+1
i =

1

|za,ci |+ ζ
, i = 1, . . . , I + J + L,

where ζ is a small positive constant.
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4) Terminate on convergence or when c reaches a spec-
ified maximum number of iterations cmax. Otherwise,
increment c and go to step 2.

Remarks 4: Similarly to [15], here we introduce the param-
eter ζ > 0 in step 3 in order to avoid inversion of zero-valued
component in za.
The economic impact on power market operations due to such
a class of false data injection attacks is illustrated in the next
section.

VI. ILLUSTRATIVE EXAMPLES

In this section we consider the standard IEEE 14-bus system
in Figure 1 to discuss the economic impact of malicious data
attacks against state estimation. The system comprises a total
of five generators. Three cases, summarized in Table II, are
analyzed. In Case I, only one transmission line is congested
and two line flow sensors are assumed to be compromised
using false data injection attack. In Cases II and III, we assume
there are multiple congested transmission lines. Compared
with Case II, Case III only allows a limited number of sensors
which can be compromised. As a result, the attacker needs to
both pick a subset of sensors and its input.

In Cases I and II, an attacker follows the procedure de-
scribed in the end of Section III with the purpose of gaining
profit from virtual bidding. In Case III, the attacker follows
the limited sensor attack algorithm described in Section V.
At the pair of the nodes that are pre-specified in the third
column of Table II, the attacker buys and sells the same
amount of virtual power in day-ahead market at nodes j1 and
j2, respectively. Based on historical trends, the attacker buys
at the lower priced node and sell at the higher priced node 1.
In real-time market operations, the attacker compromises the
selected line flow sensors by injecting false data without being
detected. By doing so, the congested transmission lines in day-
ahead operations appear no longer congested from the system
state estimation. This, in turn, will result different real-time ex-
post LMPs with controllable bias compared to the day-ahead
LMPs2.

In Case I, only one transmission line (from bus 1 to bus 2) is
congested. The attacker chooses to buy same amount of virtual
power at bus 4 (lower price) and sells virtual power at bus
2 (higher price) in day-ahead market. By compromising two
line flow measurement sensors with false data injection, the
transmission line congestion appears to be relieved in real-time
EMS. This manipulated system state is then passed to real-time
market clearing procedure, which computes a uniform ex-post
LMP across the system. Figure 2 shows the LMPs with and
without the cyber attacks. Based on equation (12), the profit
of such transaction is about $2/MWh. In Case II, day-ahead
market clearing shows that there are three congested lines,
bus 1 and bus 2 have LMP difference of about $8/MWh. By

1The choice of pairs of nodes does not necessarily have to be between
a congested transmission line [14]. As long as the pair of nodes exhibit
consistent nodal price differences, this pair of nodes could be a candidate.

2To illustrate the effect of the attacks on ex-post market clearing prices, we
assume that the load forecast at day-ahead is perfect. In other words, if there
were no cyber attacks, the day-ahead LMP will be the same as the ex-post
LMP.

Fig. 1. IEEE standard 14-bus system
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compromising three line flow sensors indicated in the third
column of Table II, the designated pair of nodes (buses 1 and
2) has the same LMP in ex-post real-time market. The reason
is that malicious data injection attacks to these three sensors
lower the estimated line flow, thereby setting the shadow
prices of the actual congested lines to be zero. The profit of
such transaction is approximately $8.2/MWh. In Case III, we
assume that an attacker can compromise at most two sensors.
By applying the algorithm described in Section V, the attacker
chooses to compromise line flow sensors between nodes 1-2,
and nodes 2-3. Compromising only these two sensors cannot
make all the congested lines appear uncongested in real-time
operations. However, as shown in Figure 3, compromising
just two sensors can still generate $6.0/MWh of profit for the
attacker.

In Table III we compare the attack efforts and the associated
expected financial profits for all the three cases. We use the
infinity norm of za normalized by the infinity norm of z as an
indicator of the attacker’s effort. As the system congestion
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TABLE II
CASE DESCRIPTION

congested lines in day-ahead (from bus-to bus) virtual bidding nodes compromised sensors
Case I 1-2 2 and 4 line flow sensors 1-2, 3-4
Case II 1-2, 2-4, 2-5 1 and 2 line flow sensors 1-2, 2-3, 2-4
Case III 1-2, 2-4, 2-5 1 and 2 line flow sensors 1-2, 2-3
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Fig. 3. LMP with and without cyber attacks (three congested lines)

TABLE III
ATTACK EFFORTS AND PROFITS (ε = 1 MWH)

relative efforts ( ∥za∥∞
∥z∥∞

) profits (% of transaction cost)
Case I 1.23% 2.40%
Case II 1.41% 9.46%
Case III 1.31% 7.54%

becomes more complex, the potential of financial gain by
maliciously placing false data attacks is also higher. One can
observe from the comparison between Case II and Case III
that if the attacker can only compromise a limited number
of sensors, then the expected profits decrease. However, even
compromising a very small number of sensors (e.g. two
sensors in the Case III) can lead to profits, showing how the
economic losses due to even small false data injection attacks
can be significant in the long run.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we examine the possible economic impact of
false data injection attacks against state estimation in electric
power market operations. We show how an attacker can manip-
ulate the nodal price of ex-post real-time market without being
detected by the state estimators. In conjunction with virtual
bidding, these integrity attacks can lead to consistent financial
profit for the attacker. A heuristic is developed to compute the
optimal injection of false data from the attacker’s perspective.
False data injection attacks with a limited number of sensors
are formulated as a convex optimization problem and thus
solved efficiently by the attacker. Illustrative examples in IEEE
14-bus system show that the potential economic gain for the

attackers are significant even with small number of sensors
being compromised by the attackers.

In future work, the development of countermeasures to
mitigate the financial risks of malicious data injection attacks
will be investigated. We also plan to study the sensitivity of
different ex-post LMP pricing models subject to such a class of
malicious data injection attacks [17]. Another important future
direction of research is to conduct more realistic case studies,
and investigate the accumulate profit of such attacks. Finally,
we believe that future robust state estimation algorithms which
could detect these false/malicious data injections need to be
developed.
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