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Abstract— In this paper, we consider the problem of sequen-
tial binary hypothesis test in adversary environment based on
observations from s sensors, with the caveat that a subset of
c sensors is compromised by an adversary, whose observations
can be manipulated arbitrarily. We choose the asymptotic
Average Sample Number (ASN) required to reach a certain
level of error probability as the performance metric of the
system. The problem is cast as a game between the detector
and the adversary, where the detector aims to optimize the
system performance while the adversary tries to deteriorate it.
We propose a pair of flip attack strategy and voting hypothesis
testing rule and prove that they form an equilibrium strategy
pair for the game. We further investigate the performance of
our proposed detection scheme with unknown number of com-
promised sensors and corroborate our result with simulation.

I. INTRODUCTION

Recent advancements in communication technology and
sensing elements have made networked sensor system more
readily available in control systems, performing the func-
tion of observation, detection and monitoring. However, the
reliance on communication and sparsely spacial distribution
make the sensor system vulnerable in the presence of various
cyber attacks such as measurement manipulation, commu-
nication block, false data injection, etc. Since malicious
attacks, such as Stuxnet [1] and BlackEnergy malware [2]
may incur substantial damage on economy, ecosystem and
even public safety, designing resilient networked system with
secure detection, estimation and control algorithm has been
recognized by both engineers and scholars as a significant
research field.

In this paper we consider the problem of detecting a binary
state θ with s sensors in adversarial environment. We assume
c out of s sensors are compromised and their observations
could be manipulated arbitrarily by the adversary. We in-
troduce the Byzantine attack setting where system manager
has no information about the exact set of corrupted sensors
but only knows the cardinality of the set. The detection
performance is evaluated by its Average Sample Number
under prescribed level of significance (probability of error).
We adopt a similar formulation as [3] where the problem is
considered as a game between the detector and the attacker,
in which the detector attempts to optimize the performance
while the adversary intends to deteriorate it. A pair of
strategy (attack strategy from the adversary and hypothesis
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testing scheme from the detector) is proposed and proved
to be a Nash equilibrium pair for the game. Furthermore,
scenario with unknown number of compromised sensors
is investigated and choice of parameter in sequential test
algorithm is discussed.

Related Work:
The study of sequential analysis (to the best of our

knowledge) originated from Abraham Wald et al. [4][5]
who proposed the Sequential Probability Ratio Test (SPRT)
and proved its optimality in 1940s. Due to its wide ap-
plicability and optimality in hypothesis testing, sequential
analysis has gained wide application in sensor network se-
curity design [6][7], change detection[8][9], signal anomaly
detection [10][11], etc.

As threats to control systems from cyber attacks are
increasing rapidly these days, studies about secure detec-
tion problem draw attention from researchers. The research
efforts can be classified into two main directions: anomaly
diagnose and resilient algorithm design. In the former one,
anomaly diagnosis schemes are designed to reveal the exis-
tence of attack and trigger alarm and/or recovery mechanism.
For example, state estimation problem under false data injec-
tion attacks is considered in [12]. The paper aims to reveal
insecurity conditions under which the estimation system is
insecure and find communication channels require protection
against attacks. In [13], problem of detecting stealthy data-
injection attacks on control systems is addressed. A method
to reveal zero dynamics attacks by modifying the system’s
structure is proposed. In the problem of resilient algorithm
design, researchers pursuit a design of secure system which
has graceful performance degradation in the presence of
attack. Since attacks may not be eliminated immediately
even if we know its existence because of the concealment
of attackers in cyberspace, resilient algorithm design is
preferred in the sense of safety guarantee. We choose resilient
testing algorithm design as our research goal in this paper.

The problem of resilient inference has been studied from
various perspective recently including hypothesis testing
[3][14], change detection [9][15], state estimation [16][17],
etc. We focus on hypothesis testing problem. Similar for-
mulation of detecting a binary state with multiple sensors
under Byzantine attack is studied by Ren et al. [18] recently
and the problem of security-efficiency trade-off is raised.
Moreover, the model is extended to multi-hypothesis testing
and heterogeneous sensor scenario where game theoretic
approach is adopted [19] and sensor selection problem is
investigated [20].

We consider the problem of detecting a binary state



using sequential analysis in the sense that stopping time
is determined by observations while other researches use
a prescribed number of observed samples, e.g. one-shot
scheme [21][22] and fixed time analysis [18]. By making
decision adapted to observations, Average Sample Number
is saved (as can be seen in Remark 8) because sampling
is stopped as soon as the existing observations possess
enough preference on a certain hypothesis. The efficiency of
detection sampling in our paper is evaluated and optimized
by integrating ASN into performance metric (see definition
of delay in equation 4). Similar methodology could be seen
in the study of change detection (e.g. [15][23]).

The rest of this paper is organized as follows: In Sec-
tion II, we formulate the problem of binary hypothesis test
and define the admissible attack and binary state detecting
strategy as well as the performance metric. In Section III,
we propose an attack strategy by flipping the distribution of
observations from the compromised sensors and a resilient
detection rule by voting among all sensors. This pair of
strategy is then proved to form an equilibrium pair for
the game between attacker and detector with performance
defined in Section II as payoff. In Section IV, the scenario
where actual number of compromised sensors is unknown
(including the scenario where all sensors are benign) is
investigated and corresponding performance is quantified.
Simulation result is provided in Section V, and Section VI
finally concludes the paper.

Notations: We denote by Z+ the set of positive integers
and by R the set of real numbers. We denote by x ∼ y
when x/y→1. Cardinality of a finite set S is denoted as |S |.
Transpose of a vector or matrix is denoted by superscript T .

II. PROBLEM FORMULATION

A. Binary Hypothesis Testing

Suppose there is a binary state θ ∈ {0,1} detected by
a group of s sensors. At each discrete time index k, the
observation from each sensor i ∈ S , {1,2, ...,s} is collected
by a fusion center. Let row vector xxxi = [xi(1),xi(2),xi(3), ...]
denote the sequence of observations from the ith sensor and
column vector xxx(k) = [x1(k),x2(k),x3(k), ...,xs(k)]T denote
the observations at time k from all sensors. We assume
that all observations from different sensors at different time
are independently identically distributed for each θ . Simialr
to notations in [18], when the hypothesis is false (θ = 0),
probability measure generated by xi(k) is denoted as ν and
it is denoted as µ when the hypothesis is true (θ = 1).
In other words, for any Borel-measurable set B ⊆ R, the
probability that xi(k) ∈B equals to ν(B) when θ = 0 and
equals to µ(B) when θ = 1. We denote the probability space
generated by all measurements xxx(1), xxx(2), . . . as (Ω, F , Pθ )
, where for any l ≥ 1

Pθ (xi1(k1) ∈B1, . . . ,xil (kl) ∈Bl)

=

{
ν(B1)ν(B2) . . .ν(Bl) if θ = 0
µ(B1)µ(B2) . . .µ(Bl) if θ = 1

,

when (i j,k j) 6= (i j′ ,k j′) for all j 6= j′. The expectation taken
with respect to Pθ is denoted by Eθ .

We further assume that probability measure ν and µ are
absolutely continuous with respect to each other. Therefore,
the log-likelihood ratio Li(k) of xi(k) is well-defined as

Li(k), log
(

dµ

dν
(xi(k))

)
, (1)

where dµ/dν is the Radon-Nikodym derivative.

B. Byzantine Attack

Let the (manipulated) observation received by the fusion
center at time k be

xxx′(k) = xxx(k)+ xxxa(k), (2)

where xxxa(k) ∈ Rs is the deflective vector injected by the
attacker at time k. By adding values to the real observations
xxx(k), the attacker can rewrite them to arbitrary value they
assign. We have the following assumptions on the attacker.

Assumption 1 (Sparse Attack): There exists an index set
C ⊆ S with |C | = c such that

⋃
∞
k=1 supp{xxxa(k)} = C where

supp(xxx) , {i ∈ S : xi 6= 0} is the support of vector xxx. Fur-
thermore, the system knows the cardinality c, but it does not
know the set C .

Remark 1: It is conventional in the literature (e.g. [15]
[24][25]) to assume that the attacker possesses limited re-
sources, i.e., the number (or percentage) of compromised
sensors is fixed and is known by the system manager. The
value of c can also be seen as a design parameter representing
the tolerance of sensor corruptions in the system.

We denote by N , S \ C the honest (not affected by
attack) sensor. The information the attacker have access to
is assumed as follows:

Assumption 2 (Attacker Knowledge): (1) The attacker
knows the probability measure, i.e. µ and ν ; (2) The attacker
knows the real system state θ ; (3) The attacker knows the
real observation from all compromised sensors from the
beginning to the present time instant.

Remark 2: The only restriction on the attack strategy is
that the set of compromised sensors is fixed from Assumption
1. The attacker have adequate knowledge about the system
and can carry out complex attack strategies such as time-
varying or probabilistic ones. This assumption is conven-
tional in literature concerning the worst-case attacks (e.g.
[26]). Nevertheless, assuming the adversary to be powerful
when designing system would make sure its security and is
in accordance with the Kerckhoffs’s principle.

An admissible attack strategy is a mapping from attacker’s
information set to the bias vector that satisfies Assumption
1. Let the compromised sensor index set C = {i1, i2, · · · , ic}.
Define XXXC (k) as the matrix formed by true measurements
from time 1 to k at compromised sensors:

XXXC (k), [xxxC (1),xxxC (2), · · · ,xxxC (k)] ∈ Rc×k

with

xxxC (k), [xi1(k),xi2(k), · · · ,xic(k)]
T ∈ Rc×1.



Similar to XXXC (k), XXXa(k) ∈ Rs×k is defined as the matrix
formed by bias vectors xxxa(k) ∈ Rs×1 from time 1 to k. The
injected bias vector is designed by the attacker based on its
information set, i.e.

xxxa(k) = g(XXXC (k),XXXa(k−1),θ ,k) , (3)

where g is a measurable function of accessible observa-
tions XXXC (k), history attacks XXXa(k − 1), real state θ and
time k such that xxxa(k) satisfies Assumption 1. Denote the
probability space generated by all manipulated observations
xxx′(1),xxx′(2), . . . as (Ω,F ,Pg

θ
) where θ is the real state. The

corresponding expectation is denoted as Eg
θ

.

C. Performance Metric

The detector at time k is defined as a mapping from the
manipulated observation matrix to the set of decision:

fk : XXX ′(k)→{continue,0,1},

where continue denote taking next observation at time k+1
because existing knowledge is not enough to make a deci-
sion. Decision 0 and 1 denote stop taking observations and
choose hypothesis H0 and H1 respectively. System’s strategy
f , ( f1, f2, · · ·) is defined as an infinite sequence of detectors
from time 1 to ∞.

Based on the definition of detection strategies, the stopping
time T representing the time that the test terminates is a
{F ′

t }-stopping time, where F ′
t is a σ -field of all the (ma-

nipulated) observations from time 1 to k: F ′
t = σ{XXX ′(k)}.

Define the worst case Average Sample Number (detection
delay) under attack g as

D(T ), max
θ=0,1

Eg
θ
[T ]. (4)

Denote the probability of Type-I and Type-II error1 of
the binary hypothesis testing task as α and β respectively,
e.g. α , P0[ fT = 1],β , P1[ fT = 0]. As a detector needs
to make decisions based on as few samples as possible
under error probability constraints which vary in different
situations, we consider the asymptotic performance as error
probability tends to zero:

γ( f ,g), lim
α=β→0+

log(1/α)

D(T )
. (5)

Remark 3: By definition, γ( f ,g) ≥ 0 for any admissible
f and g because α ≤ 1 and D(T ) > 0. The performance
integrates error probabilities α,β with detection delay D(T )
which we hope to be small at the same time. It means larger
γ indicates better detection performance.

Remark 4: The performance γ is determined by both the
detection rule f and attack strategy g so it is denoted as
γ( f ,g). The system manager intends to design a resilient
detector f to maximize γ while the attacker needs malicious
attack g to minimize γ .

1In statistical hypothesis testing, a type-I error is rejection of a true null
hypothesis H0, while a type-II error is the failure to reject a false null
hypothesis.

In this paper, we intend to propose a pair of strategy
( f ∗,g∗), such that for any strategies f and g, the following
inequality holds:

γ( f ,g∗)≤ γ( f ∗,g∗)≤ γ( f ∗,g). (6)

As a result, the pair of strategy ( f ∗,g∗) reaches a Nash
equilibrium (which is not necessarily unique). In other words,
given strategy of one player as f ∗ or g∗, the other player do
not have a strictly better strategy. We present the strategy
pair in the next section.

III. EQUILIBRIUM STRATEGY PAIR

In this section we present an attack strategy and a detection
scheme and prove that they can form a Nash equilibrium pair.

A. Preliminaries Results

Before we go on, we first present some basic results
of hypothesis testing scheme without attack which will be
helpful for future discussion. Denote the Kullback-Leibler
(K–L) divergences between those two distribution we are
trying to distinguish (i.e. µ and ν) as

I1 ,
∫

x∈R
log
[

dµ(x)
dν(x)

]
dµ(x), I0 ,−

∫
x∈R

log
[

dµ(x)
dν(x)

]
dν(x)

To avoid degenerate problems, we adopt the following
assumptions:

Assumption 3: The K–L divergences are well-defined,
i.e., 0 < I0, I1 < ∞.

We introduce a sequential test strategy for multiple sensor
based on Sequential Probability Ratio Test proposed by Wald
[27]. We denote the cumulative log-likelihood ratio of sensor
i at time n by Si(n) and the one summing over set M by
SM (n):

Si(n),
n

∑
k=1

Li(k), SM (n), ∑
i∈M

Si(n), (7)

where Si(0) is assumed to be 0 and M ⊆ S . The decision
is taken according to whether the prescribed threshold is
crossed, i.e.

fk =

 0, SM (k)≤−a
continue, −a < SM (k)< b

1, SM (k)≥ b
, (8)

where a,b > 0 are chosen to regulate error probabilities α,β
to meet the constraints. Denote the defined detection rule
based on summed log-likelihood ratio from sensors in M as
fM . We have the following lemma quantifying performance
of this test (called sum-SPRT) in the absence of attack. The
proof is provided in Appendix (Section VII-A).

Lemma 1: Define I , min{I0, I1}, for all admissible test
rule f based on information in M ,

γ( f ,g = 000)≤ γ( fM ,g = 000) = |M | · I, (9)

where g = 000 means the attacker is absent.
Remark 5: The performance of fM is proportional to the

number of sensors used |M | and the constant I defined by
K-L divergence. Constant I who represents the ”distance”



of two distributions could be treated as a basic unit of
performance.

Now we move on to consider the detection problem under
attack. We assume s > 2c to prevent trivial problems in the
rest of paper if without further notice.

B. Attack Strategy

In this subsection we show an attack strategy where the
attacker flips the distribution of the compromised sensor
observations under different states to confuse the detector.
We denote it as g∗ (named flip attack) and it is defined in
the following:

Denote sensor index set of the first c sensors as O1 ,
{1,2, . . . ,c} and the set of last c sensors as O2 , {s− c+
1,s− c + 2, . . . ,s}. Firstly, the attacker generates random
observations x̃i(k) at time k for every sensor i ∈ O1 ∪ O2
according to the opposite distribution, i.e. distribution with
parameter θ in contrast to the real value:

P[x̃i(k) ∈B] =

{
µ(B), i f θ = 0
ν(B), i f θ = 1 . (10)

Secondly, if θ = 0, inject bias data to make sure the final
observation of sensors in O1 is the same as x̃i(k) in O1. If
θ = 1, the same operation is done for sensors in O2, i.e.

xa
i (k) =

{
x̃i(k)− xi(k), θ = 0, i ∈ O1 or θ = 1, i ∈ O2

0, others .

(11)
By this operation, the following inequality of performance
holds.

Theorem 1: For any admissible detection strategy f we
have

γ( f ,g∗)≤ (s−2c)I. (12)
Remark 6: The coefficient (s−2c) indicates that the de-

tector will have positive performance when less than half of
the sensors are compromised. It also implies every increase
of compromised sensor will incur two units of performance
decrease. The result follows Theorem 3(2) in [18].

Proof: Under attack g∗, for either θ = 0 or θ = 1,
sensors in O1 will follow distribution µ and sensors in O2
will follow distribution ν . In other words, only sensors in
S \ (O1 ∪O2) have different distributions under different θ .
Since we assume s > 2c, S \(O1∪O2) 6= /0. If we define M =
S \ (O1∪O2), according to Lemma 1,

γ( f ,g∗)≤ γ( fM ,g = 000) = |S \ (O1∪O2)|I = (s−2c)I.

Thus, equation (12) is obtained.

C. Detection Strategy

In this section we present a detection strategy that could
form a Nash equilibrium pair with flip attack g∗. Before we
present the detection rule, we first define some notations.

First we define the stopping time of single threshold test
for each sensor i in (13)(14). Similar to basic SPRT, those

two thresholds are denoted as −a < 0 < b:

τ
+
i (b), inf

k∈Z+
{Si(k)≥ b}. (13)

τ
−
i (a), inf

k∈Z+
{Si(k)≤−a}. (14)

Then sort those stopping time of the same threshold in an
ascending order and denote them as τ

−
(i)(a),τ

+
(i)(b) :

τ
−
(1)(a)≤ τ

−
(2)(a)≤ ·· · ≤ τ

−
(s)(a),

τ
+
(1)(b)≤ τ

+
(2)(b)≤ ·· · ≤ τ

+
(s)(b).

Define r as the parameter of decision rules with s/2 < r ≤ s
and the voting rule f (r) is defined as taking corresponding
hypothesis the first time when there have been r crossing
of the same threshold. The rule is showed formally in the
following. For each time k,

f (r)k =


continue, k < min{τ−

(r)(a),τ
+
(r)(b)}

0, k = τ
−
(r)(a)< τ

+
(r)(b)

1, k = τ
+
(r)(b)< τ

−
(r)(a)

0 or 1, k = τ
+
(r)(b) = τ

−
(r)(a)

. (15)

The decision 0 or 1 means stop sampling and take H0
or H1 with the same probability 0.5. Denote the detection
strategy defined above as f (r) , { f (r)1 , f (r)2 , . . .}. We denote
the stopping time of detection rule f (r) as T (r).

Before we show the performance of detection strategy, we
provide some preliminary results of stopping times and error
probabilities in absence of attack whose proof is provided in
Appendix (Section VII-B).

Theorem 2:

(1) lim
a=b→∞

E0

∣∣∣∣∣τ
−
(r)(a)

a
− 1

I0

∣∣∣∣∣= 0, lim
a=b→∞

E1

∣∣∣∣∣τ
+
(r)(b)

b
− 1

I1

∣∣∣∣∣= 0

(16)

(2) lim
a=b→∞

E0[T (r)]

a
≤ 1

I0
, lim

a=b→∞

E1[T (r)]

b
≤ 1

I1
(17)

(3) lim
a=b→∞

1
b

logP0[τ
+
(r)(b)≤ τ

−
(r)(a)]≤−r (18)

lim
a=b→∞

1
a

logP1[τ
−
(r)(a)≤ τ

+
(r)(b)]≤−r (19)

In the following we show a proposition indicating that the
limitation in the definition of performance (i.e. α = β tends
to zero) could be replaced by choosing a = b and a,b→∞.
The result comes straightforwardly from (3) in Theorem 2
and we omit the proof.

Proposition 1: The following two limiting process are
equivalent to each other for the definition of performance
in (5).

(i) α = β→0+. (ii) a = b→∞.
Based on Theorem 2 and Proposition 1, we are ready to

show the performance of our detection rule with carefully
designed r.

Theorem 3: For any admissible attack strategy g, fix r =
s− c and denote f ∗ , f (s−c). We have

γ( f ∗,g)≥ (s−2c)I.



Proof: We claim the following is true for arbitrary
attack g (notice that Pg

θ
and Eg

θ
denote probability and

expectation under attack g)

Eg
1[τ

+
(r)(b)]≤ E1[τ

+
(r+c)(b)]. (20)

Eg
0[τ
−
(r)(a)]≤ E0[τ

−
(r+c)(a)]. (21)

Pg
1[τ
−
(r)(a)≤ τ

+
(r)(b)]≤ P1[τ

−
(r−c)(a)≤ τ

+
(r−c)(b)]. (22)

Pg
0[τ
−
(r)(a)≥ τ

+
(r)(b)]≤ P0[τ

−
(r−c)(a)≥ τ

+
(r−c)(b)]. (23)

The left hand side are expected stopping times and error
probabilities under attack while the right hand side are the
ones without attack. We prove (20)(22) and (21)(23) can be
proved in the same way. In order to analyze stopping time
τ
+
(r)(b), without loss of generality, we assume Si(k) has been

ordered by index for some fixed k, i.e.

S1(k)≤ S2(k)≤ ·· · ≤ Ss(k).

The worst case of stopping time τ
+
(r)(b) is that largest c

cumulative log-likelihood ratios Si(k) are assigned to be
smaller than all other ones under attack. If we denote
cumulative log-likelihood ratios of compromised sensor as
Sa

i (k), then we have the following in the worst case :

max
s−c+1≤i≤s

Sa
i (k)< S1(k).

In this condition, the stopping time is reached if other r
honest Si(k) are no smaller than threshold b, i.e.

τ
+
(r)(b)≤ inf

k
{Ss−r−c+1(k)≥ b},

which implies (20). For error probability Pg
1[τ
−
(r)(a) ≤

τ
+
(r)(b)], the worst case is that cumulative log-likelihood

ratios from compromised senors satisfy Si(n) ≤ −a,∀i ∈
C ,∀n∈Z+, which means the wrong decision is made as long
as there are r− c mistake votes, i.e. {τ−

(r−c)(a)≤ τ
+
(r−c)(b)}

occur in absence of attack. Thus, (22) is obtained.
We are ready to quantify the performance under attack

with the help of inequalities (20) to (23). On one hand,
detection delay can be upper bounded based on (16), (20)
and definition of voting rule:

Eg
1[T

(r)]≤ Eg
1[τ

+
(r)(b)]≤ E1[τ

+
(r+c)(b)]∼

b
I1
.

On the other hand, error probability can be quantified based
on (19) and (22) that

β ≤Pg
1[τ
−
(r)(a)≤ τ

+
(r)(b)]

≤P1[τ
−
(r−c)(a)≤ τ

+
(r−c)(b)]≤Ce−(r−c)a,

where C is a constant term. Those two inequalities imply

lim
α=β→0+

log(1/β )

Eg
1[T

(r)]
≥ (r− c) ·a

b/I1
= (r− c)I1.

When θ = 0, similar results could be derived from equa-
tion (21) and (23). Thus, by replacing r with s−c, the final
result is obtained:

γ( f ∗,g)≥ (s− c− c)min{I0, I1}= (s−2c)I.

The proof is completed.
Combining Theorem 1 and 3, we are ready to show the

Nash equilibrium pair of strategies.
Theorem 4: Detection strategy f ∗ defined in (15) with

r = s− c and attack strategy g∗ defined in (10) and (11)
form a Nash equilibrium, i.e. for any admissible detection
rule f and attack g,

γ( f ,g∗)≤ γ( f ∗,g∗) = (s−2c)I ≤ γ( f ∗,g).
Proof: Set the detector in Theorem 1 as f ∗ and attack in

Theorem 3 as g∗ and we can obtain γ( f ∗,g∗)≥ (s−2c)I and
γ( f ∗,g∗)≤ (s−2c)I at the same time. Substituting (s−2c)I
with γ( f ∗,g∗) in theorem 1 and 3 leads to the result.

Remark 7: The payoffs for players of the game are γ( f ,g)
(for detector f ) and −γ( f ,g) (for attacker g). Notice that
the strategy set for this game is non-compact, the Nash
equilibrium does not necessarily exist. Our result actually
proved the existence of Nash equilibrium in addition to a
pair of strategy.

Remark 8: Since the definition of γ( f ,g) can also be used
to evaluate non-sequential detection schemes, we are able to
compare their performance with ours. We define

Ĩ ,− log
[

inf
w∈R

{∫
x∈R

(
dµ(x)
dν(x)

)w

dν(x)
}]

.

It has been shown in [18] Theorem 2 that 0 < Ĩ < I.
The detector performance in [18] is the same as ours for
fixed sample detecting scheme and the value of detector
performance in that paper is (s−2c)Ĩ which is smaller than
ours. In this sense, our scheme is more sample-efficient
because the sampling is terminated as soon as there is enough
statistical information indicating the real hypothesis.

Remark 9: Single time step computation complexity of
our detection scheme is O(s) as computing Si(k) and voting
among sensors both have a complexity of O(s). Therefore,
the computational complexity is lower than the result in [18]
where the sorting algorithm cause a computational com-
plexity of O(s logs). Moreover, voting detection algorithm
is more easily applied to distributed computing because the
sensors do not need to send the actual observations to the
control center but only need to inform whether the threshold
is crossed. System based on our detection algorithm have
less information transmission pressure and is more likely to
achieve better efficiency and resilience.

IV. EXTENSIONS

In the previous section, we assume the number of compro-
mised sensors c is known to the system manager. However,
in practice the real value may be unknown and what we
have is a estimation of its upper bound. It can be seen as a
design parameter denoting how many sensor corruptions the
system can tolerate. In this section, we study the condition
where we have an upper bound c and the actual number of
compromised sensors c can take value in {0,1,2, . . . ,c}.

We denote the voting detection rule with r = s−c as f̃ ,
f (s−c). We have the following Theorem revealing the lower
bound of its performance.



Theorem 5: Given detector f̃ , assume c is the actual
number of compromised sensors and c≤ c < s/2. Under any
admissible attack, we have

γ( f̃ ,g)≥ (s− c− c)I.
Proof: In this problem, Theorem 3 still holds true and

the only difference is the choice of r. Thus, the result is
obtained by substituting s− c with s− c.

Remark 10: The performance loss is in proportional to
the sum of estimation number of corruption c and the actual
number of corruption c. If c is fixed, excessive c > c will
cause unnecessary performance loss.

The result in Theorem 5 implies the performance lower
bound when all sensors are benign. We present it in the
following Corollary formally.

Corollary 1: When there is no attack, i.e. c = 0, perfor-
mance is lower bounded:

γ( f̃ ,g = 000)≥ (s− c)I.
Remark 11: γ( f̃ ,g = 000) could be seen as the detection

efficiency of voting rule at normal operation (attacker is
absent). The increasing of c will sacrifice detection per-
formance in absence of attack while gaining better system
resilience. Thus, sufficient knowledge about the attacker (e.g.
how many sensors will be compromised) will be helpful for
system efficiency-security trade off. Since the equilibrium
strategy pair is not unique, questing for a detection rule
who can achieve maximum performance when the attack is
present and absent simultaneously is meaningful and could
be our future work.

V. SIMULATION

In this section, we provide some numerical examples to
verify the results established in the previous sections. We
assume the observations of sensors follow i.i.d. distribution
of N(−1,1)2 when θ = 0 and N(1,1) when θ = 1. In this
case I = I0 = I1 = 1.

We set s= 10 and c varies from 0 to 4. In Fig. 1, detection
and attack strategy are f ∗ and g∗ respectively. We calculate
detection delay D(T ) and error probability α with threshold
a = b vary from 5× 100 to 1× 105 for each fixed c. The
result log(1/α)

D(T ) is normalized by I and should tend to s−2c
according to Theorem 4. To simulate the error probability
with higher accuracy, we adopt the importance sampling
approach [28].

VI. CONCLUSION

In this paper, we formulate the problem of binary sequen-
tial detection in adversarial environment as a game between
the detector and the attacker. Detection performance is de-
fined asymptotically by both error probability and Average
Sample Number as error probability tends to zero and this
value is integrated in the game as payoff which the detector
intends to maximize while the attacker intends to minimize.
We propose a pair of detection rule and attack strategy

2N(µ,σ2) represent Normal distribution with mean µ and variance σ2

100 101 102 103 104 105
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threshold a,b (a = b)

γ
(

f∗
,g
∗ )
/I

Fig. 1. Normalized performance of equilibrium strategy pair ( f ∗,g∗) when
s = 10 for c = 0 (black solid line), c = 1 (cyan dash dot line), c = 2 (green
dot line) , c = 3 (red dash line) and c = 4 (blue solid line).

and prove them to be an equilibrium pair of the game.
Furthermore, the performance in condition where number
of compromised sensor is unknown and where all sensors
are benign is quantified. The choice of detection rule param-
eter r is discussed and result is corroborated by numerical
simulation. The future work includes the trade-off between
system’s security and efficiency as well as discussion about
achievability of optimal security and efficiency.

VII. APPENDIX

A. Proof of Lemma 1

First we claim the inequality in (9) is true by contradiction
to optimum character of SPRT in [5].

Denote |M |I as IM . Assume there exists a detection rule f ′

that satisfy γ( f ′,g = 000) = I′ > IM . We consider the condition
where probability of type-I error equals to that of type-II
error. Those error probabilities is denoted as pM , α( fM ) =
β ( fM ) and p′,α( f ′) = β ( f ′). The stopping time is denoted
as TM and T ′ respectively. By definition ∀ε > 0 there exists
P > 0 such that ∀ 0 < pM , p′ < P∣∣∣∣ log(1/pM )

D(TM )
− IM

∣∣∣∣< ε,∣∣∣∣ log(1/p′)
D(T ′)

− I′
∣∣∣∣< ε.

Let p′ = pM and choose ε < (I′− IM )/2 then one obtains

D(T ′)<
log(1/p′)

I′− ε
<

log(1/pM )

IM + ε
< D(TM ),

which implies minθ{Eθ (T ′)} < minθ{Eθ (TM )}. That con-
tradicts to {Eθ (T ′)≥ Eθ (TM )},θ = 0,1 (coming from opti-
mality of Wald’s Test). Thus completes the proof.

Remark 12: The optimality of SPRT is originally proved
for single sensor scenario. As the observation from sensors
are i.i.d. distributed, they could be formulated as a s dimen-
sion observation vector and each hypothesis represents a joint
distribution. For example, when θ = 0, ν(X1 = x1, . . . ,Xs =



xs), ∏
s
i=1 ν(Xi = xi). And the optimality (minimal Average

Sample Number with same error probability) still holds.
In the following we show the asymptotic performance of

sum-SPRT. Some of useful asymptotic properties of α,β and
Eθ [TM ] has been provided by Berk [29] and we show some
equivalent statements in the following Lemma.

Lemma 2: Assume a,b > 0, M 6= /0 and we have the
following results hold with probability one:

lim
α=β→0+

1
a

log
1
β

= 1, lim
α=β→0+

1
b

log
1
α

= 1,

lim
α=β→0+

E0[TM ]

a
=

1
|M |I0

, lim
α=β→0+

E1[TM ]

b
=

1
|M |I1

.

Proof: Those results of single sensor (i.e. |M | = 1)
follow straightforwardly from [29] Theorem 2.1 and 2.2. We
focus on the generalization of multi-sensor scenario.

Firstly, the asymptotic characteristic of error probabilities
do not rely on sensor numbers for the same reason as in
Remark 12 and therefore first two equalities are true. We
concentrate on the Average Sample Number. First we have
the following from [29]. For every i ∈ S

lim
α=β→0+

E0[Ti]

a
=

1
E0[Li(k)]

, lim
α=β→0+

E1[Ti]

b
=

1
E1[Li(k)]

,

where Ti is the stopping time of TM when M is a singleton
set {i}. According to definition in (7), the summed log-
likelihood ratio over set M at time k is ∑i∈M Li(k). Therefore,

E0

[
∑

i∈M
Li(k)

]
= ∑

i∈M
E0 [Li(k)] = |M |I0.

The similar result could be obtained when θ = 1. Proof of
Lemma 2 is accomplished.

We are ready to verify the equality in (9). For readability
purposes, the limitations without subscripts in the following
equation means limits as α = β tends to 0+. With results
above, noticing a∼ b, one obtains

γ( fM ,g = 000) =
limlog(1/α)

max{limE0[TM ], limE1[TM ]}

=min
{

lim
b
a
· lim a

E0[TM ]
, lim

b
E1[TM ]

}
=min{|M |I0, |M |I1}= |M | · I.

Proof of Lemma 1 is finished.

B. Proof of Theorem 2

Before we prove results in Theorem 2, we need to present
two lemmas. The following paragraph is the shared assump-
tion of those two lemmas.

Assume xxx(k) , [x1(k), . . . ,xm(k)] is a sequence of inde-
pendently and identically distributed random vectors of m
dimensions. Denote the probability measure and expectation
with respect to it as P,E and denote the expectation of every
element as µ , E[x1(k)]. We assume 0 < µ < ∞. Define
random walk Si(n), ∑

n
k=1 xi(k).

Lemma 3: Define two stopping time in the following (b>

0)
T (b), inf{n ∈ Z+, max

1≤i≤m
Si(n)≥ b},

T (b), inf{n ∈ Z+, min
1≤i≤m

Si(n)≥ b}.

Then we have

lim
b→∞

E
∣∣∣∣T (b)b

− 1
µ

∣∣∣∣= 0,

lim
b→∞

E
∣∣∣∣T (b)b

− 1
µ

∣∣∣∣= 0.

Proof: It’s a special case of [30] Theorem 1.
Lemma 4: We assume that there exist h < 0 so that

E[ehxi ] = 1 and in addition E[xiehxi ] < ∞. The stopping
time τ

−
i (a) is defined same as equation (14). We have the

following result for every 1≤ i≤ m:

lim
a=b→∞

1
a

logP[τ−i (a)< ∞] =−|h|.
Proof: The symmetric result (µ < 0,h > 0) is provided

in [31] Section 1. As all xi are identically distributed, results
hold for all 1≤ i≤ m.

Now we can proceed to prove Theorem 2.
Part (1)

lim
a=b→∞

E0

∣∣∣∣∣τ
−
(r)(a)

a
− 1

I0

∣∣∣∣∣= 0, lim
a=b→∞

E1

∣∣∣∣∣τ
+
(r)(b)

b
− 1

I1

∣∣∣∣∣= 0.

Proof: We first prove the latter one and the former one
can be dealt with similarly.

Define the first time when there are r statistics Si(k) above
threshold b or below threshold −a at the same time:

T+
(r)(b), inf

k∈Z+
{S(s−r+1)(k)≥ b},

T−(r)(a), inf
k∈Z+
{S(r)(k)≤−a},

where S(i)(k) is the ascending ordered cumulative log-
likelihood ratio Si(k), i.e., S(1)(k) ≤ S(2)(k) ≤ . . .S(s)(k). In
the absence of attack, for the same a or b we have the
following inequality:

τ
−
(1)(a) = T−(1)(a)≤ τ

−
(r)(a)≤ τ

−
(s)(a)≤ T−(s)(a),

τ
+
(1)(b) = T+

(1)(b)≤ τ
+
(r)(b)≤ τ

+
(s)(b)≤ T+

(s)(b).

It suffices to prove

lim
a=b→∞

E1

∣∣∣∣∣T
+
(1)(b)

b
− 1

I1

∣∣∣∣∣= 0, lim
a=b→∞

E1

∣∣∣∣∣T
+
(s)(b)

b
− 1

I1

∣∣∣∣∣= 0.

According to Lemma 3 (notations T ,T are also from Lemma
3), T+

(s)(b) = T (b), T+
(1)(b) = T (b). If we set m = s and those

elements xi(k) in vector xxx(k) as log-likelihood ratios Li(k)
from s sensors, statement above is true because exception of
log-likelihood ratio by definition equals to K–L divergence.
Thus, the proof is finished.

Part (2)

lim
a=b→∞

E0[T (r)]

a
≤ 1

I0
, lim

a=b→∞

E1[T (r)]

b
≤ 1

I1
.



Proof: We prove the second one and the proof for
the first one is similar. According to definition in (15), the
stopping time of detection rule satisfy

T (r) = min{τ−(r)(a),τ
+
(r)(b)}.

Therefore,

lim
a=b→∞

E1[T (r)]

b
≤ lim

a=b→∞

E1[τ
+
(r)(b)]

b
=

1
I1
,

where the equation comes from Part (1). The proof is
completed.

Part (3)

lim
a=b→∞

1
b

logP0[τ
+
(r)(b)≤ τ

−
(r)(a)]≤−r,

lim
a=b→∞

1
a

logP1[τ
−
(r)(a)≤ τ

+
(r)(b)]≤−r.

Proof: We prove the second one and the first one can
be proved similarly. As what we have done in Part (1),
we set those elements xi(k) in vector xxx(k) in Lemma 4 as
log-likelihood ratios Li(k) from s sensors. We obtain the
following asymptotic result (24) from Lemma 4 by showing
that conditions in the lemma is satisfied by h =−1.

P1[τ
−
i (a)< ∞]∼Ce−a ∀i ∈ S , a = b→∞, (24)

where C is a constant term.
In order to prove (24), it suffices to show that E1[e−Li(k)] =

1 and E1[Li(k)e−Li(k)]< ∞ for every i ∈ S ,k ∈ Z+. First we
have

E1[e−Li(k)] =
∫
R

(
dµ(x)
dν(x)

)−1

dµ(x) =
∫
R

dν(x) = 1.

For the second one,

E1[Li(k)e−Li(k)] =
∫
R

log
(

dµ(x)
dν(x)

)
dν(x) = I1 < ∞.

Considering the i.i.d. setting, (24) is proofed. Event
{τ−

(r)(a) ≤ τ
+
(r)(b)} implies that there exists a index set

R , {i1, i2, . . . , ir} ⊆ S that for every i in the set, event
{τ−i (a)< ∞} occurs. Considering the independence of every
cumulative log-likelihood ratio, we obtain

P1[τ
−
(r)(a)≤ τ

+
(r)(b)]

≤
⋃

|R |=r,R⊆S

P1

[
max
i∈R

τ
−
i (a)< ∞

]
≤

⋃
|R |=r,R⊆S

∏
i∈R

P1[τ
−
i (a)< ∞]∼

(
s
r

)
Ce−ra.

This directly leads to result of Part (3) as the logarithm of
constant term will converge to zero when divided by a.
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