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Abstract— In this paper, we consider the problem of sequen-
tial detection with m sensors in adversarial environment. An
attacker intends to increase the detection error by modifying
n out of m sensors’ measurements. On the other hand, the de-
tector needs to be designed to achieve the optimal performance
during the attack. The problem is formulated as a game between
detector and adversary in this paper. We study both cases where
m > 2n and m ≤ 2n, and obtain an equilibrium strategy pair of
detection rule and attack scheme for both cases. Furthermore,
we investigate the efficiency of our proposed detection strategy
in the absence of attacker.

I. INTRODUCTION

Because of the ever-decreasing price, network embedded
sensors have been widely used in critical infrastructures for
the purpose of detection, monitoring and control. However,
at the same time, the extensive use of sensors also makes
the system more vulnerable to potential cyber attacks such
as selective forwarding, message manipulation, false data in-
jection, etc. [1]. Since the application of widespread sensors
varies from aerospace, manufacturing, transportation, power
grids, etc., which are always safety-critical: their failure can
cause irreparable harm to economy, environment, and even
public health, researcher have acknowledged the importance
of designing the system with secure detection, estimation and
control algorithm [2].

In this paper, we consider the problem of the sequential
detection of a binary state θ with m sensors in adversarial
environment. Inspired by the security concern of integrity
attack on sensor measurements, we assume that an attacker
intends to compromise n out of m sensors by modifying
their measurements. The performance of the system is
characterized by the probability of detection error in the
worst case. We formulate this problem as a game between
the detector and attacker, in which the detector attempts
to minimize this probability, while the adversary intends
to maximize it. We investigate both cases where m > 2n
and m ≤ 2n and propose optimal strategies for detector
and attacker to achieve a Nash-equilibrium [3] for both
cases. The efficiency of proposed strategy in the absence of
attacker is further discussed.

Related Work
Recently, sequential tests have been widely applied in the

detection problem (e.g., [4][5]), which is termed as sequen-
tial detection. Because of its optimum nature, sequential
detection plays an important role in speeding up the detection
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process [6][7]. However, little of such work concerns cyber
attacks and takes security as a goal.

The computer and sensor network security have focused
on prevention mechanisms [2]. For example, in [8], secure
routing protocols are proposed for designing a secure com-
munication infrastructure. In [9][10], the false data filtering
mechanisms are developed to prevent deceptive data injected
into sensors network and decrease the energy waste. Al-
though these security mechanisms can improve the security
of system in practice, they can often be subverted: inevitable
human errors, software bugs, and design flaws create many
opportunities for adversary to launch successful attacks [11].
Therefore, it is desirable for a control system which could
continue to function well even when under attack [2].

The robust secure detection problem has been extensively
studied in recent years [12]). A classical approach is that,
researchers first make some reasonable assumptions on the
knowledge of attacker, and then propose a detector working
against possible adversaries to achieve the optimal perfor-
mance. In [13], Bayram et al. propose a restricted Neyman-
Pearson approach for composite hypothesis testing in the
presence of uncertainty in the prior probability distribution.
They prove that the robust linear detector design problem
can be formulated as a convex optimization problem. A lot
of research formulates the detection problem as a minimax
optimization (e.g., [14]), where one attempts to construct an
optimal detector that minimizes the probability of detection
error in the worst case. The main difference between them
and this paper is that we intend to propose optimal strategies
for not only detector but also attacker to obtain a Nash-
equilibrium.

Some researches concerning adversarial environment also
formulate the problem as a game. For example, in [15],
Vamvoudakis et al. consider the problem of estimating a
binary random variable based on sensor measurements that
may have been corrupted by a cyber-attacker. The estimation
problem is formulated as a zero-sum partial information
game. Then new game theoretic approaches are applied to
derive the optimal detector. However, these works mainly
focus on the one-step situation, while in this paper, we talk
about the sequential tests involving the interval from time 1
to time infinity.

The rest of this paper is organized as follows: In section
II, we formulate the problem of sequential detection with
n manipulated sensors from m total sensors as a game
between the detector and attacker. In section III and IV, we
propose the equilibrium strategy pair of detection rule and
attack strategy for the case where m > 2n and m ≤ 2n,
respectively. In section V, the efficiency of our proposed
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detection strategy is investigated. Section VI provides some
simulation results, and section VII finally concludes the
paper.

Notations: For a vector x, we will denote by xT as its
transpose, and ||x||0 as the ”zero norm” of x, which indicates
the number of the nonzero elements in the vector x. For a
scalar v, dve = min{p ∈ Z|v ≤ p}, and bvc = max{p ∈
Z|p ≤ v}, where Z is the set of integers. We will use P0(A)
and P1(A) to represent the probability of event A on the
condition that θ = 0 and θ = 1, respectively.

II. PROBLEM FORMULATION

In this paper, we consider the problem of detecting an
unknown binary state θ ∈ {0, 1} with m sensors’ mea-
surements. At each time k, the measurement vector y(k)
is defined as:

y(k) , [y1(k) y2(k) · · · ym(k)] ∈ Rm, (1)

where yi(k) is the scalar measurement from sensor i at time
k. The following assumptions on sensor measurement yi(k)
are made:

1) Given θ, all measurements {yi(k)}i=1,...,m,k=1,... are
independent and identically distributed (i.i.d.).

2) For any Borel-measurable set S ⊆ R, the probability
of yi(k) belongs to S satisfies the following equation:

P(yi(k) ∈ S) =

{
ν(S) if θ = 0

µ(S) if θ = 1
, (2)

where µ and ν are the probability measure on R. We further
assume that ν and µ are absolutely continuous with respect
to each other. Hence, the log-likelihood ratio λ : R→ R of
yi(k) is well defined as

λ(yi(k)) , log

(
dµ

dν
(yi(k))

)
, (3)

where dµ/dν is the Radon-Nikodym derivative.
We denote by Y (k) as the row vector of all measurements

from time 1 to time k:

Y (k) , [y(1) y(2) · · · y(k)] ∈ Rmk. (4)

At time k, we define the detector fk : Rmk → [0, 1] as a
mapping from the measurement space Y (k) to the interval
[0, 1]. The system follows the detection strategy like this:
if fk(Y (k)) = γ ∈ [0, 1], the system decides the detection
value θ̂ to be 1 with probability γ, and decides θ̂ to be 0 with
probability 1− γ. The system’s strategy f , (f1, f2, · · · ) is
defined as an infinite sequence of detectors from time 1 to
time infinity.

A. Attack Model

We assume that an attacker intends to disturb the detection
state of the system by modifying sensors’ measurement.
However, because of the limited resource, it can only com-
promise n out of m sensors in the system. The set of the
compromised sensors is denoted as I = {i1, · · · , in}, which
is fixed over time. We assume that the system knows the
number n, but it does not know the exact set I.

To simplify notations, let us define:

yI(k) , [yi1(k) yi2(k) · · · yin(k)] ∈ Rn, (5)

and

YI(k) , [yI(1) yI(2) · · · yI(k)] ∈ Rnk. (6)

Now we consider the knowledge of the attacker. We
assume that the attacker knows the probability measure ν
and µ, the total number of sensors m, as well as the true
state θ. We further characterize the attacker by its knowledge
of the measurement vector:

1) An attacker is called a weak attacker if at any time k, it
knows the measurement vector YI(k) from the compromised
sensors;

2) An attacker is called a strong attacker if at any time k,
it knows the measurement vector Y (k) from all sensors.

Remark 1: In practice, if the channel between detector
and sensors is not encrypted, then the attacker could po-
tentially learn by eavesdropping the measurements Y (k)
from all sensors and thus is a strong attacker. On the other
hand, if the communication channel is encrypted and the
attacker cannot listen to the communication between the
uncompromised sensors and detector, then it is more suitable
to assume a weak attacker model.

For simplicity, let us denote by Ỹ (k) as the measurement
vector known by the attacker at time k. From the above
definition, we have

Ỹ (k) ,

{
YI(k) for a weak attacker
Y (k) for a strong attacker

.

At each time k, the attacker adds a random bias vector
ya(k) according to its knowledge of the system Ỹ (k) to the
true measurement y(k). As a result, the system has to make
its decision based on the manipulated measurement y′(k)
which can be defined as

y′(k) = y(k)+ya(k) , [y′1(k) y′2(k) · · · y′m(k)], (7)

where y′i(k) is the manipulated measurement of sensor i at
time k.Similar to (3), we define the log-likelihood ratio of
y′i(k) as follows:

λ(y′i(k)) , log

(
dµ

dν
(y′i(k))

)
. (8)

We further define

ya(k) = [ya1 (k) ya2 (k) · · · yam(k)] , g(I, θ, k, Ỹ (k)),
(9)

where yai (k)i=1,...,m is the bias measurement vector added to
sensor i at time k, and yai (k) = 0 for i /∈ I. Obviously, g is a
function of I, θ, Ỹ (k) and k. As a result, g characterizes the
attacker’s action for all possible scenarios. Hence, we can use
g to denote the attacker’s strategy. Similar to the definition
of Y (k), we further define the manipulated measurements
from time 1 to k to be:

Y ′(k) = [y′(1) y′(2) · · · y′(k)] ∈ Rmk. (10)
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B. Asymptotic Detection Performance

Under attacks, the probability that the system makes a
wrong decision at time k is

e(θ, I, k) ,

{
Efk(Y ′(k)) when θ = 0

1− Efk(Y ′(k)) when θ = 1
. (11)

In this paper, we are concerned with the worst-case scenario.
To this end, let us define

ε(k) , max
θ=0,1,|I|=n

e(θ, I, k), (12)

which denotes the worst-case probability of detection error
considering all possible sets of compromised sensors and true
state θ.

At each time k, we want to design a system strategy fk
to minimize ε(k). However, since the computation of expec-
tation usually involves complicated integration, we consider
the asymptotic detection performance instead. Define the rate
function as

ρ , lim inf
k→∞

− log ε(k)

k
. (13)

Remark 2: ρ indicates the rate that the probability of
detection error goes to 0, which represents the detection
performance of the system. From the definition (11)-(13),
one can prove that ρ is always nonnegative. If ρ > 0, then
the probability of error will exponentially decay to 0, and a
larger ρ indicates a shorter time for this convergence.

From (11), it is trivial to know that the worst-case rate ρ is
a function of both detection strategy f and attacker’s strategy
g. Therefore, in the rest of this paper, we will use ρ(f, g)
instead to indicate this relationship. Clearly, the detector
wants to maximize ρ(f, g) to decrease the detection error,
while the attacker wants to minimize it to make the error
larger.

In this paper, we intend to propose a pair of strategy
(f∗, g∗), such that for any strategies f and g, the following
inequality holds:

ρ(f∗, g) ≥ ρ(f∗, g∗) ≥ ρ(f, g∗). (14)

As a result, the pair of strategy (f∗, g∗) reaches a Nash-
equilibrium [3]. In other words, if the detector implements
f∗, then there is no incentive for the adversary to deviate
from g∗, and vice versa.

Remark 3: In this paper we only provide one pair of equi-
librium strategies in each case we investigate. However, it is
worth noticing that the equilibrium strategy pair satisfying
(14) may not be unique.

C. Optimal Detection Rate for a Single Sensor in the Ab-
sence of Attacker

To simplify the presentation of the detection and attack
strategies proposed later, in this subsection, we present the
best rate can be achieved when only one sensor’s measure-
ments are used under the condition that the attacker is absent.
We use C to denote this optimal rate.

From [16], this optimal decay rate is given by

C , sup
0<t<1

− log
[
E(etλ(yi(k))|θ = 0)

]
, (15)

where λ(yi(k)) is the log-likelihood ratio defined in (3).

III. EQUILIBRIUM STRATEGIES FOR m > 2n

We first investigate the case when no more than half of
the sensors are compromised by the attacker.

Before going on, we introduce the function s(y, i, j) :
Rm × N × N, where 1 ≤ i ≤ j ≤ m, which satisfies the
following two conditions:

1) For any permutation matrix P , s(PyT , i, j) = s(y, i, j).
2) If y1 ≤ y2 ≤ · · · ≤ ym, s(y, i, j) =

∑j
l=i yl.

Remark 4: The function s(y, i, j) can be interpreted as
the summation from the ith element in vector y to the jth
one after sorting in the ascending order.

From the definition of s(y, i, j), we have the following
proposition :

Proposition 1: For y, y′ ∈ Rm, and ||y − y′||0 ≤ n, the
following inequalities holds:

1) If j + n ≤ m, then s(y′, i, j) ≤ s(y, i+ n, j + n);
2) If i− n ≥ 1, then s(y′, i, j) ≥ s(y, i− n, j − n).
To simplify notation, let us further define

min
m−2n

(y) , s(y, 1,m− 2n), (16)

med
m−2n

(y) , s(y, n+ 1,m− n), (17)

max
m−2n

(y) , s(y, 2n+ 1,m). (18)

Then we have the following lemma:
Lemma 1: For y, y′ ∈ Rm, and ||y − y′||0 ≤ n, the

following inequalities hold:

min
m−2n

(y) ≤ med
m−2n

(y′) ≤ max
m−2n

(y). (19)
Proof: The proof of Lemma 1 can be immediately

achieved from Proposition 1 by substituting n+ 1 to i, and
m− n to j.

We are now ready to prove the main theorems of this
section. We first derive a detection strategy which achieves
the detection rate ρ ≥ m − 2n against any possible attack.
After that, we propose an attack strategy and further prove
that the rate for any detector cannot exceed m− 2n against
this attack. Therefore, the Nash-equilibrium is established.

A. Optimal Detection Strategy

At each time k, consider the following detection strategy
f∗k :

1) Compute the sum of log-likelihood ratio from time 1
to time k for each sensor i:

Λ′i(k) =

k∑
t=1

λ(y′i(t)), (20)

where λ(y′i(t)) is the log-likelihood ratio defined in (8).
Denote

Λ′(k) , [Λ′1(k) Λ′2(k) · · · Λ′m(k)]. (21)
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2) Compute medm−2n(Λ′(k)), and compare it to 0 to
generate θ̂ as follows:

θ̂ =

 0 if med
m−2n

(Λ′(k)) < 0

1 if med
m−2n

(Λ′(k)) ≥ 0
. (22)

The system’s strategy is defined as f∗ , (f∗1 , f
∗
2 , · · · ).

Remark 5: If (20) is done in a recursive fashion, then the
computational complexity incurred at each k is O(m). The
computational complexity for (22) is O(m log(m)), which
can be achieved by first sorting Λi(k) in the ascending order
and then summing the middle m− 2n elements. Therefore,
the total computational complexity at each time step k is
O(m log(m)).

We now have the first theorem:
Theorem 1: For any attack strategy g, the following in-

equality holds:

ρ(f∗, g) ≥ (m− 2n)C.
Proof: Define

Λi(k) =

k∑
t=1

λ(yi(t)), (23)

and
Λ(k) , [Λ1(k) Λ2(k) · · · Λm(k)], (24)

where Λi(k) is defined in (23). Since the attacker can only
manipulate up to n sensors, ||Λ(k) − Λ′(k)||0 ≤ n. From
Lemma 1, we have

min
m−2n

(Λ(k)) ≤ med
m−2n

(Λ′(k)) ≤ max
m−2n

(Λ(k)). (25)

Consider the situation when the true state θ = 0. Following
the above strategy f∗, the system will make a wrong decision
if medm−2n(Λ′(k)) ≥ 0. As a result,

e(θ = 0, I, k) = P0( med
m−2n

(Λ′(k)) ≥ 0)

≤ P0( max
m−2n

(Λ(k)) ≥ 0),

where the inequality comes from (25).
Notice that maxm−2n(Λ(k)) ≥ 0 if and only if there exists

an index set K with cardinality m− 2n, i.e., |K| = m− 2n
such that ∑

i∈K
Λi(k) ≥ 0.

As a result,

e(θ = 0, I, k) ≤ P0

 ⋃
|K|=m−2n

{∑
i∈K

Λi(k) ≥ 0

}
≤

∑
|K|=m−2n

P0

(∑
i∈K

Λi(k) ≥ 0

)

=

(
m

2n

)
P0

(
m−2n∑
i=1

Λi(k) ≥ 0

)
,

where the last equality holds because of the symmetry
between sensors.

By Cramer’s theorem [17],

− lim sup
k→∞

logP0(
∑m−2n
i=1 Λi(k) ≥ 0)

k
= (m− 2n)C.

Therefore,

− lim sup
k→∞

log e(θ = 0, I, k)

k
≥ (m− 2n)C. (26)

Similarly, one can prove that

− lim sup
k→∞

log e(θ = 1, I, k)

k
≥ (m− 2n)C. (27)

Combining the two inequalities (26) and (27), we get the
conclusion that

ρ(f∗, g) ≥ (m− 2n)C.

B. Optimal Attack Strategy

We consider the attack strategy g∗ which flips the distri-
bution of the compromised sensor measurements. Formally
it is defined as follows:

1) The attacker generates i.i.d. random variables y′i(k),
where i = 1, · · · ,m and k = 1, · · · , such that the distribu-
tion of y′i(k) satisfies

P(y′i(k) ∈ S) =

{
µ(S) if θ = 0

ν(S) if θ = 1
. (28)

2) Compute yai (k) as follows:

yai (k) =

{
y′i(k)− yi(k) if i ∈ I
0 if i /∈ I

. (29)

Theorem 2: For any detection strategy f , the following
inequality holds:

ρ(f, g∗) ≤ (m− 2n)C.
Proof: Consider the following two cases:

1) True state θ = 0 and sensor 1, 2, ..., n are compromised.
In this case, at each time k, the sensor measurement y(k)
follows the following distribution:

y(k) ∼ µ× · · · × µ︸ ︷︷ ︸
n

× ν × · · · × ν︸ ︷︷ ︸
n

× ν × · · · × ν︸ ︷︷ ︸
m−2n

.

2) True state θ = 1 and and sensor n + 1, n + 2, ..., 2n
are compromised. In this case, at each time k, the sensor
measurement y(k) follows the following distribution:

y(k) ∼ µ× · · · × µ︸ ︷︷ ︸
n

× ν × · · · × ν︸ ︷︷ ︸
n

×µ× · · · × µ︸ ︷︷ ︸
m−2n

.

We use the probability measure µa and νa to denote the
distribution of y(k) in above two cases, respectively. Notice
that for both cases, sensor 1 to sensor n will follow the
distribution µ, and sensor n+ 1 to sensor 2n will follow the
distribution ν.
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Now we consider the following optimization problem
which intends to minimize the probability of error in the
above two cases:

min Pµa
(θ̂ = 1) + Pνa(θ̂ = 0), (30)

where the first term indicates the probability of detection
error in the first case, and the second term denotes this
probability in the second case.

It is well known optimal solution for (30) is the Bayes
detector which is defined as follows [18]:

fB(Y ′(k)) =


0 if

m∑
i=2n+1

Λ′i(k) < 0

1 if

m∑
i=2n+1

Λ′i(k) ≥ 0

.

Furthermore,

lim inf
k→∞

log(Pµa
(θ̂ = 1) + Pνa(θ̂ = 0))

k

= lim inf
k→∞

log(e(θ = 0, I, k) + e(θ = 1, I, k))

k

= lim inf
k→∞

log
log(maxθ(e(θ, I, k)))

k
.

As a result, Bayes detector is also optimal in the sense
that the rate ρ(f, g∗) is maximized. Notice that this optimal
detector only relies on the measurements from sensor 2n+1
to sensor m for its decision. From Cramer’s theorem [17],

− lim sup
k→∞

logP0(
∑m
i=2n+1 Λ′i(k) ≥ 0)

k
= (m− 2n)C,

and

− lim sup
k→∞

logP1(
∑m
i=2n+1 Λ′i(k) < 0)

k
= (m− 2n)C,

Therefore, Bayes detector will distinguish the above two
cases with the rate (m − 2n)C. Because of its optimality,
no detector can distinguish the above two cases with better
than this rate against g∗. In other words, for any detection
strategy f ,

ρ(f, g∗) ≤ (m− 2n)C.

One can further prove that under such attacks, the best rate
(m − 2n)C can also be achieved by the optimal detection
strategy f∗ defined in (20)-(22). As a result, from Theorem
1 and Theorem 2, we can immediately derive the following
theorem:

Theorem 3: The strategy pair (f∗, g∗) forms a Nash-
equilibrium such that

ρ(f, g∗) ≤ ρ(f∗, g∗) ≤ ρ(f∗, g),

where f∗ is the optimal detection strategy defined in (20)-
(22), g∗ is the optimal attack strategy defined in (28)-(29),
and ρ(f∗, g∗) = (m− 2n)C.

Remark 6: Since f∗ in (20)-(22) does not depend on the
knowledge of the attacker, and g∗ in (28)-(29) only requires

the attacker’s knowledge of the compromised sensors’ mea-
surements. Hence, equilibrium strategy pair in Theorem 3
can be achieved by even the weak attacker.

IV. EQUILIBRIUM STRATEGIES FOR m ≤ 2n

In this section, we consider the case when more than half
of the sensors are compromised.

We begin with the attack strategy g∗ defined as below:
1) The attacker generates i.i.d. random variables y′i(k),

where i = 1, · · · ,m and k = 1, · · · , such that

P(y′i(k) ∈ S) =

{
µ(S) if θ = 0

ν(S) if θ = 1
. (31)

2) Compute yai (k) as follows:
If θ = 0,

yai (k) =

{
y′i(k)− yi(k) if i ∈ J1
0 if i /∈ J1

; (32)

If θ = 1,

yai (k) =

{
y′i(k)− yi(k) if i ∈ J2
0 if i /∈ J2

, (33)

where J1,J2 are the subsets of the compromised sensors set
when θ = 0 and θ = 1, respectively, with |J1| = dm2 e, and
|J2| = bm2 c.

In other words, under g∗, the attacker will flip the mea-
surements’ distribution of sensors in set J1,J2, when θ = 0
and 1, respectively.

Remark 7: The reason why the adversary will not imple-
ment the same strategy as (28)-(29) in the situation m ≤ 2n
is that under such attacks, the detector can easily figure it out
by simply flipping the compromised sensors’ measurements
back if it knows the strategy of the adversary. Thus, the
detection rate ρ would not be minimized.

Theorem 4: For any detection strategy f , the following
inequality holds:

ρ(f, g∗) = 0.
Proof: Consider the following two cases:

1) True state θ = 0, I = {1, · · · , n}, and J1 =
{1, · · · , dm/2e}, then the distribution of the sensor mea-
surement y(k) at each time k is as follows:

y(k) ∼ µ× µ× · · · × µ︸ ︷︷ ︸
dm2 e

× ν × ν × · · · × ν︸ ︷︷ ︸
m−dm2 e

.

2) True state θ = 1, I = {m− n+ 1, · · · , m}, and
J2 = {dm/2e+ 1, · · · , m}, then the distribution of the
sensor measurement y(k) at each time k is as follows:

y(k) ∼ µ× µ× · · · × µ︸ ︷︷ ︸
dm2 e

× ν × ν × · · · × ν︸ ︷︷ ︸
m−dm2 e

.

Since the distribution of y(k) is identical, no detector can
distinguish the above two cases. Therefore, Theorem 4
follows immediately.

From Theorem 4, we have the next theorem:
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Theorem 5: For any detection strategy f , the strategy pair
(f, g∗) forms a Nash-equilibrium such that

ρ(f, g∗) = 0 ≤ ρ(f, g),

where g∗ is the attack strategy defined in (31)-(33).
Proof: The proof of Theorem 5 is obvious since ρ is

always nonnegative.

V. EXTENSION

In practice, the attacker may not present consistently. Thus,
the system with all sensors uncompromised may operate
for some time. As a result, we are interested in what the
performance, i.e., detection rate, of the system will be under
proposed detection strategy when there are no sensors being
compromised.

Theorem 6: Under the detection rule (20)-(22), when all
the sensors are benign, the detector will achieve the detection
rate of (m− n)C.

Proof: Since there is no attacker in this situation, we
will use ρ(f∗) rather than ρ(f∗, g) to denote the detection
rate.

Consider the situation when θ = 0. Notice that

e(θ = 0, I = ∅, k) = P0( med
m−2n

(Λ′(k)) ≥ 0)

= P0( med
m−2n

(Λ(k)) ≥ 0)

= P0(s(Λ(k), n+ 1,m− n) ≥ 0).

Hence, we are interested in the probability of the event
{s(Λ(k), n+ 1,m− n) ≥ 0}.

We first prove that ρ(f∗) is lower bounded by the rate
(m− n)C.

Notice that

e(θ = 0, I = ∅, k) = P0(s(Λ(k), n+ 1,m− n) ≥ 0)

≤ P0(s(Λ(k), n+ 1,m) ≥ 0)

≤
(
m

n

)
P0

(
m−n∑
i=1

Λi(k) ≥ 0

)
.

From Cramer’s theorem [17],

− lim sup
k→∞

logP0(
∑m−n
i=1 Λi(k) ≥ 0)

k
= (m− n)C.

As a result,

− lim sup
k→∞

log e(θ = 0, I, k)

k
≥ (m− n)C.

The similar result can also be get under the condition that
θ = 1. Therefore,

ρ(f∗) ≥ (m− n)C. (34)

Then we further prove that ρ(f∗) is also upper bounded
by the rate (m− n)C.

We assume P0(Λi(k) ≥ 0) = M. From Cramer’s theorem
[17], we have

− lim sup
k→∞

logM

k
= C. (35)

Notice that if Λ1(k) < 0, · · · ,Λn(k) < 0, and Λn+1(k) ≥
0, · · · ,Λm(k) ≥ 0, then the considered event {s(Λ(k), n +
1,m − n) ≥ 0} will happen. Therefore, the probability of
this event is lower bounded by

(
m
n

)
Mm−n(1 −M)n. As a

result,

− lim sup
k→∞

log e(θ = 0, I = ∅, k)

k

≤ − lim sup
k→∞

log
((
m
n

)
Mm−n(1−M)n

)
k

= (m− n)C.

Similarly, one can prove that

lim sup
k→∞

log e(θ = 1, I = ∅, k)

k
≤ (m− n)C.

As a result,
ρ(f∗) ≤ (m− n)C. (36)

Combining inequalities (34) and (36), one can immedi-
ately get

ρ(f∗) = (m− n)C.

Remark 8: We notice that the rate in Theorem 6 is not
optimal because ρ(f) is not maximized, since one can prove
that if the attacker is absent, then the Bayes detector [18]
will achieve the best rate of mC. Usually, the performance
of the detection rule when there is no attacker at all is
referred to by efficiency, while the performance when the
attacker is present is referred to by security. Therefore, in
order to increase the security of the system, we sacrifice the
system’s efficiency to some degree. The parameter n can be
interpreted as how many bad sensors can the system tolerate,
which is a design parameter. One can further derive that
the larger the n is, the more resilient the detector will be
under attacks, but at the same time, the more performance
degradation will occur during normal operation when the
attacker is absent. Therefore, there exists a trade-off between
security and efficiency, which can be tuned by choosing a
suitable parameter n.

VI. SIMULATION

In this section, we provide numerical examples to verify
the theoretical results established in the previous sections. We
assume that the sensor’s measurement {yi(k)}i=1,...,m,k=1,...

follows the distribution N (−1, 1)1 when θ = 0, and follows
N (1, 1) when θ = 1. From (15), one can derive that the
optimal decay rate of a single sensor is C = 0.5.

Since the situation when m ≤ 2n is trivial, we only focus
on the case where m > 2n. We first assume m = 7, and
n varies from 0 to 3. Fig. 1 shows that under the detection
strategy f∗ defined in (20)-(22) and attack strategy g∗ defined
in (28)-(29), the detection rate ρ(f∗, g∗) finally approaches
0.5(m−2n), i.e., (m−2n)C, which are consistent with our
result.

1N (a, b) represents the Gaussian distribution with mean equals to a, and
variance equals to b.
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If the detector adopts the detection rule (20)-(22) and is
designed to tolerate n bad sensors, but the attacker is absent
in practice, then the system’s performance is further studied.
Specifically, we assume m = 7, n = 3. Fig. 2 indicates that
the system will eventually achieve the rate of (m−n)C = 2,
which is proved in Theorem 6.
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Fig. 1. Detection rate under optimal strategy pair when m = 7 and
m > 2n for n = 0 (blue solid line ), n = 1 (red dashed line), n = 2
(green dash dot line ) and n = 3 (purple dash dot dot line ).
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Fig. 2. Detection rate under optimal detection strategy when m = 7, n =
3, and all sensors are benign.

VII. CONCLUSION

In this paper, we consider the equilibrium strategy of
sequential detection in adversarial environment. In our prob-
lem, the attacker intends to deteriorate the detection perfor-
mance, and the detector needs to be designed to minimize
the probability of detection error. We study both cases where
m > 2n and m ≤ 2n, and obtain an equilibrium strategy
pair of detection rule and attack scheme for both cases. Fur-
thermore, the system’s performance of our strategy when all
sensors are benign is investigated. The future work involves
the trade-off between system’s security and efficiency.
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