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Secure Dynamic State Estimation via Local Estimators
Yilin Mo∗, Emanuele Garone†

Abstract— We consider the problem of estimating the state
of a linear time-invariant Gaussian system using m sensors,
where a subset of the sensors can potentially be compromised
by an adversary. We prove that under mild assumptions, we
can decompose the optimal Kalman estimate as a weighted
sum of local state estimates, each of which is derived using
only the measurements from a single sensor. We then propose
a convex optimization based approach, instead of the weighted
sum approach, to combine the local estimate into a more
secure state estimate. Our proposed estimator coincides with
the Kalman estimator with certain probability when all sensors
are benign and is stable when less than half of the sensors are
compromised. Numerical simulations are provided to illustrate
the performance of the proposed state estimation scheme.

I. INTRODUCTION

The increasing use of networked embedded sensors to
monitor and control critical infrastructures provides poten-
tial malicious agents with the opportunity to disrupt their
operations by corrupting sensor measurements. Supervisory
Control And Data Acquisition (SCADA) systems, for exam-
ple, run a wide range of safety critical plants and processes,
including manufacturing, water and gas treatment and distri-
bution, facility control and power grids. A wide variety of
motivations exists for launching an attack on such kind of
systems, ranging from financial reasons, e.g., reducing the
electricity bill, all the way to terrorism, e.g., threatening the
life of possibly an entire population by controlling electricity
and other life-critical resources. A successful attack to such
kind of systems may significantly hamper the economy, the
environment, and may even lead to the loss of human life.
The first-ever SCADA system malware (called Stuxnet) was
detected in July 2010 and rose significant concerns about
SCADA system security [1], [2]. The recent Ukraine power
plant hack provides a clear example of the catastrophic
outcomes of a successful attack on SCADA systems. The
research community has acknowledged the importance of
addressing the challenge of designing secure detection, esti-
mation and control systems [3].

The problem of detecting and isolating faulty sensors
has been well studied over the past decades. Bad data
detection and identification techniques have been widely used
in large scaled systems such as power grid [4]. While such
approaches are very successful in detecting and removing
random failures, they are not effective against an intelligent
adversary. Liu et al. [5] illustrate how an adversary can
inject a stealthy input into the measurements to change the
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state estimation, without being detected by the bad data
detector. Sandberg et al. [6] consider how to find a sparse
stealthy input, which enables the adversary to launch an
attack with a minimum number of compromised sensors.
Kim et al. [7] studied a so-called framing attack that can
misled the bad data detector to mistakenly remove critical
measurements, without which the network is unobservable.
Xie et al. [8] further illustrate that stealthy integrity attacks
on state estimation can lead to a financial gain in the
electricity market for the adversary.

For dynamical system, detecting malicious components via
fault detection and isolation based methods has also been
extensively studied [9], [10]. However, pinpointing the exact
set of the malicious components is in general a compu-
tationally hard problem, as it either involves generating a
residue filter for every possible set of malicious sensor [9]
or solving an L0 minimization problem [10], both of which
are combinatorial in nature.

Another area of research is the design of state estimators
that can tolerate a small portion of the sensory data being
altered. For static estimation problem, robust estimators, e.g
M-estimator, L-estimator, and R-estimator, have also been
extensively studied in the literature [11], [12], [13]. Usually,
the robustness is measured by breakdown points [14], [15]
or influence functions [16]. Mo and Sinopoli [17] propose
an estimator that has minimum mean squared error against
the worst-case attacks.

However, it must be remarked that the problem of de-
signing a secure state estimator for a dynamical system is
much more challenging. Fig 1 illustrates the information
flow of a standard Kalman filter. It is worth noticing that
the bias injected by an adversary can accumulate in the
state estimation and that the adversary can potentially exploit
this fact to introduce a large or even unbounded estimation
error [18], [19].
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Fig. 1. The information flow of the Kalman Filter.

To address this problem, Fawzi et al.[10] propose to use
a moving horizon approach. In other words, the estimator
will only use the measurements from time k − T + 1 to
time k to estimate the current state x(k), which effectively
reduces the dynamic state estimation problem into a static
estimation problem. This approach is further generalized
by Pajic et al. [20], [21] to systems subject to random or
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bounded noise. The main merit of this approach is that the
static estimation problem can be solved efficiently using `1
relaxation by exploiting the sparseness of the bias injected by
the adversary. However, the sensory data before time k − T
are discarded in the moving horizon approach, which may
result in a degradation of the estimation performance.
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Fig. 2. The information flow of the estimator proposed in [10], [20], [21]
with window size T = 2. Notice that the state estimate x̂(k) only depends
on yi(k − 1) and yi(k).

In this paper, we consider the problem of designing a
secure state estimator for a linear time-invariant Gaussian
system, subject to up to p compromised sensors. The set
of the malicious sensors is assumed to be fixed over time.
The structure of our estimate is illustrated in Fig 3 and is
described below:

1) For each sensor i, we construct a local state estimator,
which leverages all the historical measurements from
itself to derive a local state estimate.

2) The current global state estimate can then be computed
based solely on the current local state estimates using
a secure fusion scheme.
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Fig. 3. The information flow of the proposed filter.

The main merits of our approach are twofold:
1) The historical sensory data are stored in the local state

estimate and are never discarded. As a result, when
the system is not under the attack, we can recover the
optimal Kalman estimate with certain probability.

2) Since we assume that the set of the compromised
sensors is fixed, there are at most p corrupted local
state estimate. Notice that computing the current state
estimation based on the local state estimation is a static
problem. As a result, we can use `1 based method to
generate a stable state estimate.

The rest of the paper is organized as follows: In Section II
the setting of the problem is introduced with all the relevant
notation. In Section III, we prove that the Kalman estimator
can be decomposed as a linear combination of local esti-
mators. A convex optimization based approach is proposed
in Section IV to derive a more secure state estimate from

the local estimates. Section V extends our results to non-
observable cases. The performance of the proposed estimator
is illustrated via a numerical example in Section VI and
finally Section VII concludes the paper.

II. PROBLEM FORMULATION

In this paper, we consider a secure dynamic state estima-
tion problem. Consider the linear time-invariant system:

x(k + 1) = Ax(k) + w(k), (1)

where x(k) ∈ Rn is the state, w(k) ∼ N (0, Q) are
i.i.d. Gaussian process noise with zero mean and covariance
matrix Q > 0. The initial state x(0) ∼ N (0,Σ) is assumed
to be zero mean Gaussian and is independent from the noise
process {w(k)}.

It is assumed that m sensors are measuring the system and
that the measurement from the ith sensor is:

yi(k) = Cix(k) + vi(k) + ai(k), (2)

where yi(k) ∈ R and vi(k) is Gaussian measurement noise.
The scalar ai(k) denotes the bias injected by an adversary.
Clearly, for a benign sensor i, ai(k) = 0 for all k while for
a compromised sensor i, ai(k) can be arbitrary. We further
assume that the set of compromised sensor remains constant
over time.

By defining the aggregated vectors

y(k) ,

 y1(k)
...

ym(k)

 , C(k) ,

C1(k)
...

Cm(k)

 ,
a(k) ,

a1(k)
...

am(k)

 , v(k) ,

 v1(k)
...

vm(k)

 , (3)

we can rewrite (2) as

y(k) = Cx(k) + v(k) + a(k). (4)

We assume that v(k) ∼ N (0, R) with R > 0 is i.i.d and
independent of the noise process {w(k)} and the initial
condition x(0). Without loss of generality, we assume (A,C)
observable1.

If all sensors are benign, i.e., a(k) = 0 for all k, the
optimal state estimator is the classical Kalman filter:

x̂(k) = x̂(k|k − 1) +K(k) [y(k)− Cx̂(k|k − 1)] ,

P (k) = P (k|k − 1)−K(k)CP (k|k − 1),

where

x̂(k + 1|k) = Ax̂(k), P (k + 1|k) = AP (k)AT +Q,

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1,

with initial condition

x̂(0| − 1) = 0, P (0| − 1) = Σ.

1In the case (A,C) is not observable, we can always perform a Kalman
decomposition and only consider the observable space.
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Since the system is observable, it is well known that the
estimation error covariance matrices P (k) and the gain K(k)
will converge to

P , lim
k→∞

P (k), P+ = APAT +Q (5)

K , P+C
T (CP+C

T +R)−1. (6)

Since the control system typically will be running for an
extended period of time, we can assume that the Kalman
filter is at convergence, or equivalently that Σ = P, and thus
the Kalman filter reduces to the following fixed-gain linear
estimator:

x̂(k + 1) = (A−KCA)x̂(k) +Ky(k + 1). (7)

For reasons that will be clearer soon, we will denote with
Ki the ith column vector of the matrix K = [K1, . . . ,Km].
Accordingly, (6) can be rewritten as

x̂(k + 1) = (A−KCA)x̂(k) +

m∑
i=1

Kiyi(k + 1). (8)

The goal of this paper is to propose an algorithm able
to estimate the state in such a way that: 1) if no sensor
is compromised, i.e. ai(t) = 0 for all i and for all t,
the estimate coincides with certain probability to the same
estimate obtained using the Kalman filter (7); 2) if less then
half of the sensors are compromised, it still gives a stable
estimate of the state.

To achieve this goal, two results are presented. In the next
section, it is shown that, under mild hypothesis, the estimate
of the Kalman can be written as a linear combination of
estimates generated by a set of local estimators. Then, in
Section IV, a secure fusion scheme is proposed to replace
the linear fusion scheme.

III. DECOMPOSITION OF KALMAN FILTER USING LOCAL
ESTIMATE

In this section, we propose a method to decompose the
Kalman estimate (7) into a linear combination of local state
estimates. Our goal is to generate m local estimators of the
form:

x̂i(k + 1) = (A− LiCiA)x̂i(k) + Liyi(k + 1). (9)

and local state estimate x̂i(k), i = 1, . . . ,m, such that:
1) Each local estimator is stable, i.e., A−LiCiA is strictly

stable;
2) The Kalman estimate x̂ can be recovered as a linear

combination of x̂i(k), i.e.,

x̂(k) = F1x̂1(k) + . . .+ Fmx̂m(k).

To this end, we will make the following assumptions
throughout this section:

1) A is invertible.
2) A−KCA has n distinct eigenvalues. Moreover, A−

KCA and A do not share any eigenvalue.
3) (A,Ci) is observable for each Ci.

Remark 1. Notice that since we assume that (A,C) is
observable, then the invertibility of A implies that (A,CA)

is also observable. Hence, we can freely assign the poles
of A −KCA by choosing a proper gain K. As a result, if
for the optimal Kalman gain K, A−KCA does not satisfy
assumption 2, then we can perturb the gain matrix K to
enforce the second condition, which will only result in a small
estimation performance loss if the perturbation is small.

Remark 2. The third assumption is quite strong but, as we
will show in Section V, it is possible to relax it. However, in
order to cope with the space limits, we have chosen to keep
this assumption throughout Section III and IV.

Since A − KCA has distinct eigenvalues, it can be
diagonalized as:

A−KCA = V ΛV −1. (10)

As a result, we can rewrite (8) as[
V −1x̂(k + 1)

]
= Λ

[
V −1x̂k

]
+

m∑
i=1

V −1Kiyi(k + 1).

(11)

For sensor i, since (A,Ci) is observable [22], we can
compute an Li, such that A − LiCiA shares the same
eigenvalues as A−KCA. Now consider the following stable2

estimator:

x̂i(k + 1) = (A− LiCiA)x̂i(k) + Liyi(k + 1). (12)

Similarly we can diagonalize A−LiCiA as A−LiCiA =
ViΛV

−1
i , and rewrite (12) as[
V −1
i x̂i(k + 1)

]
= Λ

[
V −1
i x̂i(k)

]
+ V −1

i Liyi(k + 1).
(13)

The following lemma characterizes the vector V −1
i Li,

Lemma 1. Suppose that A−KCA and A do not share any
eigenvalue, then all entries of vector V −1

i Li is non-zero.

Proof. The proof is reported in the appendix for the sake of
legibility.

Since V −1
i Li does not contain zero entries, we can find a

diagonal matrix Λi such that

V −1Ki = ΛiV
−1
i Li. (14)

As a result, if we multiply the LHS and RHS of (13) by
Λi, we get[
ΛiV

−1
i x̂i(k + 1)

]
= Λ

[
ΛiV

−1
i x̂i(k)

]
+ V −1Kiyi(k + 1),

(15)

where we use the fact that Λ and Λi are commutative since
they are both diagonal. Hence, if we sum (15) for all i =
1, . . . ,m and compare it with (11), we can conclude that

x̂(k) =

m∑
i=1

Fix̂i(k), (16)

where Fi = V ΛiV
−1
i . We will call (16) as a linear fusion

scheme, since the Kalman estimate is recovered as a linear

2Since A −KCA is stable, A − LiCiA will also be stable since they
share the same eigenvalues.
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combination of local estimates. The following lemma char-
acterizes a very interesting property of Fi matrices.

Lemma 2. Suppose that A and A − KCA do not share
eigenvalues, then the Fi matrices satisfy the following equa-
tion:

m∑
i=1

Fi = I. (17)

Proof. The proof is reported in the appendix for the sake of
legibility.

Remark 3. It is worth noticing that we do not necessarily
need to implement the local estimator on the sensor side,
since we can let our centralized estimator implement the
filter equation (12) for each sensor and then combine them
via (16). However, depending on the application, it may
be advantageous to implement the local estimator on the
sensor side to reduce the computational burden of the central
estimator.

A. A least square interpretation for (16)

In this subsection, we show that the linear fusion scheme
(16) can be interpreted as a a least square problem, which
will be used later to derive a secure fusion scheme. To this
end, let us define the state estimation error of the ith local
estimation as ei(k), i.e.,

ei(k) = x(k)− x̂i(k),

which satisfies the following recursive equation:

ei(k + 1) = (A− LiCiA)ei(k) + (I − LiCi)w(k)

− Livi(k)− Liai(k). (18)

Let us define µi(k), νi(k) as follows:

µi(k + 1) = (A− LiCiA)µi(k) + (I − LiCi)w(k)− Livi(k),

νi(k + 1) = (A− LiCiA)νi(k)− Liai(k). (19)

One can view µi(k) as the error of the local estimate caused
by noise and νi(k) as the error caused by the bias injected
by the adversary. By linearity,

ei(k) = µi(k) + νi(k).

Let us define µ̃(k) ∈ Rmn, Ã ∈ Rmn×mn as

µ̃(k) ,

µ1(k)
...

µm(k)

 , Ã ,

A− L1C1A
. . .

A− LmCmA

 .
(20)

Similarly we can define ẽ(k) and ν̃(k) by stacking ei(k) and
νi(k) as a big vector respectively.

It is easy to prove that the covariances of the following
vectors is

Cov


 I − L1C1

...
I − LmCm

w(k)



=

 I − L1C1

...
I − LmCm

Q
 I − L1C1

...
I − LmCm


T

, (21)

and

Cov


 L1v1(k)

...
Lmvm(k)


 =


L1

...
Lm


L1

...
Lm


T
 ◦ (R⊗ 1n×n) ,

(22)

where ◦ denotes element-wise matrix multiplication, ⊗ is
the Kronecker product and 1n×n is an all one matrix of size
n× n. Now let us define Q̃ ∈ Rmn×mn to be

Q̃ , Cov


 I − L1C1

...
I − LmCm

w(k)

+ Cov


 L1v1(k)

...
Lmvm(k)


 .

(23)

As a result, we know that µ̃i(k) will be Gaussian distributed
and its covariance satisfies the following Lyapunov equation:

Cov µ̃(k + 1) = ÃCov µ̃(k)ÃT + Q̃. (24)

Finally, define W̃ as the fix point3 of (24), i.e.,

W̃ = ÃW̃ ÃT + Q̃. (25)

Consider the following optimization problem:

minimize
x̌(k),ě(k)

1

2
ě(k)T W̃−1ě(k) (26)

subject to

 x̂1(k)
...

x̂m(k)

 = Hx̌(k) + ě(k),

where H ,
[
I · · · I

]T ∈ Rmn×n. This problem can be
interpreted as the problem of finding an estimate x̌(k) that
minimizes a weighted least square of the error with the local
estimates x̂i(k), where the weighting matrix is related with
the covariance of the error of the local estimates.

The following theorem, establishes the connection be-
tween the linear fusion scheme (16) and the least-square
problem (26).

Theorem 1. The solution of the least-square problem (26)
is given by

x̌(k) = x̂(k) =

m∑
i=1

Fix̂i(k),

ě(k) = (I −H
[
F1 . . . Fm

]
)ẽ(k).

3W̃ is well defined since all A− LiCiA matrices are strictly stable
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Proof. The proof is reported in the appendix for the sake of
legibility.

Remark 4. Notice that the results and the proofs presented
in this section are purely algebraic. Therefore, the result can
be easily generalized to other linear fixed-gain estimators
and other noise models.

It is worth noticing that the linear fusion scheme (16) (or
equivalently the least-square problem (26)) is not secure in
the sense that if sensor i is compromised, then the adversary
can manipulate x̂i(k) by injecting the bias ai(k) into the
measurements yi(k). Therefore, the adversary can potentially
change the Kalman estimate arbitrarily. In the next section,
to address the security challenges, we modify (26) by adding
an `1 penalty to ensure the stability of the state estimation
in the presence of malicious sensors.

IV. SECURE INFORMATION FUSION

In this section, we propose a secure way to compute the
state estimation based on the local estimations.

Notice that the error ei(k) can be decomposed as the error
caused by the noise µi(k) and the error caused by the bias
injected by the adversary νi(k). As a result, we propose the
following secure fusion scheme based on LASSO [23]:

minimize
x̌s(k),µ̌(k),ν̌(k)

1

2
µ̌(k)T W̃−1µ̌(k) + γ‖ν̌(k)‖1 (27)

subject to x̂i(k) = x̌s(k) + µ̌i(k) + ν̌i(k), ∀i,

where x̌s(k) is the secure state estimation. γ is a constant
chosen by the system operator. µ̌(k), ν̌(k) are defined as:

µ̌(k) ,

 µ̌1(k)
...

µ̌m(k)

 , ν̌(k) ,

 ν̌1(k)
...

ν̌m(k)

 .
We now have the following lemma characterizing the

solution of the optimization problem:

Lemma 3. Let x̌s(k), µ̌(k), ν̌(k) be the minimizer for the
optimization problem (27). Let x̌(k), ě(k) be the minimizer
for the least-square problem (26). Then the following state-
ments hold:

1) The following inequality holds:

‖W̃−1µ̌(k)‖∞ ≤ γ. (28)

2) If ‖W̃−1ě(k)‖∞ ≤ γ, then

x̌s(k) = x̌(k) = x̂(k), µ̌(k) = ě(k), ν̌(k) = 0.

Proof. We will first prove (28). Assume the opposite, i.e.,

‖W̃−1µ̌(k)‖∞ > γ.

Therefore, we can find a vector ζ, such that

ζT W̃−1µ̌(k) > γ,

with ‖ζ‖1 = 1. Clearly, for any α > 0, x̌s(k), µ̌(k) − αζ
and ν̌(k) + αζ will also be a feasible solution for (27). The
corresponding cost function can be calculated as

1

2
(µ̌(k)− αζ)

T
W̃−1 (µ̌(k)− αζ) + γ‖ν̌(k) + αζ‖1

≤ 1

2
µ̌(k)T W̃−1µ̌(k) + γ‖ν̌(k)‖1

+ α
(
γ‖ζ‖1 − ζT W̃−1µ̌(k)

)
+

1

2
α2ζT W̃−1ζ.

Notice that

γ‖ζ‖1 − ζT W̃−1µ̌(k) < 0.

Hence, for small enough α, we have

1

2
(µ̌(k)− αζ)

T
W̃−1 (µ̌(k)− αζ) + γ‖ν̌(k) + αζ‖1

<
1

2
µ̌(k)T W̃−1µ̌(k) + γ‖ν̌(k)‖1,

which contradicts with the optimality of x̌s(k), µ̌(k) and
ν̌(k). Therefore, (28) must hold.

The second statement can be proved using KKT conditions
and the detailed proof is omitted due to space limit.

We now consider two scenarios:
1) All sensors are benign and the system is operating

normally.
2) p sensors are compromised.
The following two theorems characterize the performance

of the secure fusion scheme (27) for each scenario:

Theorem 2. Suppose that all the sensors are benign, i.e.,
a(k) = 0 for all k. The secure state estimate x̌s(k) equals
the optimal Kalman estimate x̂(k) if the following inequality
holds:∥∥W̄−1(I −H

[
F1 · · · Fm

]
)ẽ(k)

∥∥
∞ ≤ γ. (29)

Proof. This theorem is a direct consequence of Lemma 3
and Theorem 1.

Remark 5. If all sensors are benign, the local estimation
error ei(k) will be zero mean Gaussian distributed and

lim
k→∞

Cov(ẽ(k)) = W̃ .

If the system is operating long enough, we have Cov(ẽ(k)) ≈
W̃ and we can compute the probability that the inequality
(29) holds, i.e., the probability that the secure state estimate
equals to the optimal Kalman estimate.

We now consider the second scenario, where p sensors are
compromised. Before stating the main theorem, let us define
the following operator: fi : R×R×· · ·×R→ R, such that
fi(β1, . . . , βm) equals to the ith smallest element in the set
{β1, . . . , βm}. Assuming that e1, . . . , em ∈ Rn are vectors.
With slightly abuse of notations, we define fi(e1, . . . , em) as
a vector where each of its entry is the ith smallest element
among the corresponding entries in e1, . . . , em. We further
define fi+1/2 = (fi + fi+1)/2.
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Theorem 3. Suppose that p < m/2 sensors are compro-
mised, then the error of the secure state estimate is bounded
by

f(m+1)/2−p(µ1(k), . . . , µm(k))− γ

‖W̃−1‖∞
≤ x(k)− x̌(k)

≤ f(m+1)/2+p(µ1(k), . . . , µm(k)) +
γ

‖W̃−1‖∞
, (30)

where ‖W̃−1‖∞ is the induced infinity norm of W̃−1.

Proof. Due to the space limit, only the sketch of the proof
is provided. First, one can prove that x̌(k) and µ̌(k) must
satisfies the following relationship:

x̌(k) = fm+1
2

(x̂1(k)− µ̌1(k), . . . , x̂m(k)− µ̌m(k)). (31)

We know that x̂1(k) = x(k)−µi(k)−νi(k) and ‖µ̌(k)‖∞ ≤
γ/‖W̃‖∞. Furthermore, since at most p νi(k) are non-zero,
we have

f(m+1)/2−p(µ1(k), . . . , µm(k))

≤ f(m+1)/2(µ1(k) + ν1(k), . . . , µm(k) + νm(k))

≤ f(m+1)/2+p(µ1(k), . . . , µm(k)).

Combining with (31), we can prove (30).

Remark 6. Notice that by Theorem 2, increasing γ will
increase the likelihood that the secure estimation equals the
Kalman estimation during normal operation. On the other
hand, by Theorem 3, a large γ can potentially result in a
large estimation error when the system is under attack.

V. EXTENSION

In this section, we relax the assumption that the system is
observable for every single sensor. Assume that the system
is not fully observable by the ith sensor, i.e., (A,Ci) is not
observable. Consider the following recursive equation:

ξ̂i(k + 1) = Λξ̂i(k) + 1nyi(k), (32)

where 1n ∈ Rn×1 is an all-one vector and Λ is defined in
(10). Let us define the matrix Gi as

Gi ,

CiA(A− λ1I)−1

...
CiA(A− λnI)−1

 ,
where λi are the ith eigenvalues of Λ. Notice that the inverse
of A−λiI is well defined since A does not share eigenvalues
with Λ. The following theorem establishes the connection
between ξ̂i(k) and the state x(k).

Theorem 4. Let εi(k) , Gix(k)− ξ̂i(k), then

εi(k + 1) = Λεi(k) + (Gi − 1nCi)w(k)− 1nvi(k + 1).

In other words, ξ̂i(k) is a stable estimate of Gix(k).

Proof. By definition, we have

εi(k + 1) = Gix(k + 1)− ξ̂i(k + 1)

= GiAx(k) +Giw(k)− Λξ̂i(k)

− 1n(CiAx(k) + Ciw(k) + vi(k + 1))

= (GiA− 1nCiA)x(k)− Λx̂ii(k)

+ (Gi − 1nCi)w(k)− 1nvi(k + 1).

By the definition of Gi, one can prove that GiA−1nCiA =
ΛGi. Therefore,

εi(k + 1) = ΛGix(k)− Λξ̂i(k)

+ (Gi − 1nCi)w(k)− 1nvi(k + 1),

which concludes the proof.

Remark 7. It is worth noticing that if (A,Ci) is not fully
observable, then Gi will not be full rank. In fact, by Cayley-
Hamilton theorem (A − λiI)−1 can be written as a linear
combination of I, A, . . . , An−1. As a result, each row vector
of Gi will belong to the observable space of (A,Ci).

Now we can choose Fi as

Fi = V diag(V −1Ki),

where V is defined in (10) and diag(V −1Ki) is an n × n
diagonal matrix with the jth diagonal entry equals to the jth
entry of the vector V −1Ki. Comparing (32) and (11), we
can prove that:

x̂(k) =

m∑
i=1

Fiξ̂i(k). (33)

We can further rewrite the linear fusion scheme (33) as
the solution of a least-square problem and create a secure
fusion scheme by adding the `1 penalty term similar to (27).
The detailed derivation is omitted due to space limit.

VI. NUMERICAL EXAMPLE

In this section, we demonstrate our proposed secure esti-
mation via a numerical example. We assume the following
parameters for our system:

A =

[
1 0
0 −1

]
, C =

1 1
1 −1
1 2

 , Q = I, R = I.

The optimal steady state Kalman gain K and estimation
covariance P matrices are given by

K =

[
0.223 0.399 0.135
0.083 −0.259 0.253

]
, P =

[
0.311 −0.088
−0.088 0.171

]
.

The corresponding A − KCA matrix has eigenvalues at
0.2242 and −0.1324. As a result, we can derive the Li ma-
trices to ensure that A−LiCiA shares the same eigenvalues
with A−KCA as:

L1 =

[
0.4393
0.5310

]
, L2 =

[
0.4393
−0.5310

]
, L3 =

[
0.4393
0.2655

]
.

We consider two scenarios:
1) all sensors are benign;
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2) the first sensor is under the attack and a1(k) = 100
for all k.

We compute the empirical Mean Squared Error (MSE) of the
secure estimator for each scenarios and for different choices
of γ. Notice that when all sensors are benign, the optimal
Kalman estimator has an MSE equals to tr(P ) = 0.482. As
a result, we define the relative MSE as the MSE divided
by 0.482. Fig 4 illustrates the relative MSE of the proposed
secure estimator versus γ. It can be seen that when γ ≥ 2,
the secure estimator achieves roughly the same estimation
performance as the optimal Kalman estimator under normal
operation. On the other hand, if sensor 1 is malicious, then
the MSE achieves the minimum at around γ = 1.8.

0 1 2 3 4
1

2

3

γ

R
el

at
iv

e
M

SE

Under Normal Operation
Under Attack

Fig. 4. The relative MSE of the secure estimator v.s. different choices of
γ. The blue line indicates the relative MSE when all sensors are benign,
while the red line indicates the relative MSE when sensor 1 is malicious.

VII. CONCLUSION

We consider the problem of estimating the state of a linear
time-invariant Gaussian system using m sensors, where
some of the sensors can potentially be compromised by an
adversary. Under mild assumptions, we prove that we can
decompose the optimal Kalman estimate as a weighted sum
of local state estimates. We then propose a convex optimiza-
tion based approach to combine the local estimate into a
more secure state estimate. Numerical example illustrates
that our secure estimator achieves good performance under
both normal operation and attack scenarios.

APPENDIX I
PROOF OF LEMMA 1

Proof of Lemma 1. Notice that we can write V −1
i as

V −1
i =

[
ζ1 · · · ζTn

]T
.

where each ζj is a left eigenvector of A−LiCiA, i.e., ζTj (A−
LiCiA) = λjζ

T
j . Suppose that the jth entry of V −1

i Li is
zero, which implies that ζTj Li = 0. Therefore, we have

λjζ
T
j = ζTj (A− LiCiA) = ζTj A− ζTj LiCiA = ζTj A,

which indicates that ζj is also a left eigenvector of A with
eigenvalue λj . However, this is impossible since we assume
that A does not share any eigenvalue with A − KCA (or
A− LiCiA).

APPENDIX II
PROOF OF LEMMA 2

Proof of Lemma 2. Since Fi = V ΛiV
−1
i , to prove that∑m

i=1 Fi = I , we only need to prove

S ,
m∑
i=1

ΛiV
−1
i = V −1. (34)

By (14), Ki = V ΛiV
−1
i Li. Therefore,

A−KCA = A−
m∑
i=1

KiCiA = A− V
m∑
i=1

ΛiV
−1
i LiCiA.

(35)

On the other hand, since A− LiCiA = ViΛV
−1
i , we know

that

ΛiV
−1
i CiA = ΛiV

−1
i A− ΛΛiV

−1
i , (36)

where we use the fact that Λi and Λ are commutative.
Combining (35) and (36), we have

A−KCA = A− V SA+ V ΛS. (37)

By (10), we know that A−KCA = V ΛV −1. Hence,

0 = A− V SA+ V ΛS − V ΛV −1

= V
[
(V −1 − S)A− Λ(V −1 − S)

]
.

Since V is invertible, we have (V −1−S)A = Λ(V −1−S),
which implies that the jth row vector ζTj of V −1−S satisfies

ζTj A = λjζ
T
j .

However, A does not share eigenvalue with Λ. Therefore, all
row vectors ζj must be 0, which proves that V −1 = S.

APPENDIX III
PROOF OF THEOREM 1

Before proving the theorem we will prove the following
lemma that will be used in the proof of Theorem 1.

Lemma 4. Let K be the steady state Kalman gain defined
in (6). For any L, such that A− LCA is strictly stable, the
following Lyapunov equation holds:

P = (A−KCA)P (A− LCA)T

+ (I −KC)Q(I − LC)T +KRLT , (38)

where P is defined in (5).

Proof. Let us rewrite the RHS of (38) as

RHS = (A−KCA)PAT + (I −KC)Q

+
[
KR− (A−KCA)PATCT − (I −KC)QCT

]
LT

Thus, Lemma 4 is equivalent to

P = (A−KCA)PAT + (I −KC)Q,

and

0 = KR− (A−KCA)PATCT − (I −KC)QCT ,

which can be proved using the definition of K and P
matrices.
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At this point we can prove Theorem 1:

Proof of Theorem 1. Let us first rewrite W̃ matrix in a block
diagonal form:

W̃ =

 W̃11 · · · W̃1m

...
. . .

...
W̃m1 · · · W̃mm

 ,
where each W̃ij ∈ Rn×n. As a result, by (25), we know that
W̃ij satisfies:

W̃ij = (A− LiCiA)W̃ij(A− LjCjA)T

+ (I − LiCi)Q(I − LjCj)T + rijLiL
T
j ,

where rij is the element of the matrix R on ith row and jth
column. Since Fi(A−LiCiA)F−1

i = A−KCA and FiLi =
Ki, it is easy to prove the following recursive equation holds:

FiW̃ij = (A−KCA)FiW̃ij(A− LjCjA)T

+ (Fi −KiCi)Q(I − LjCj)T + rijKiL
T
j ,

Therefore, let S̃j =
∑m
i=1 FiW̃i,j , we can conclude that

S̃j satisfies the following recursive equation

S̃j = (A−KCA)S̃j(A− LjCjA)T (39)

+

m∑
i=1

(Fi −KiCi)Q(I − LjCj)T +

m∑
i=1

rijKiL
T
j . (40)

By Lemma 2, we know that
∑m
i=1(Fi −KiCi) = I −KC.

Furthermore, define matrix Lj ∈ Rn×m as an all zero matrix
except the jth column to be Lj , i.e.,

Lj ,
[
0 . . . 0 Lj 0 . . . 0

]
One can prove that

LjCj = LjC,
m∑
i=1

rijKiL
T
j = KRLTj .

As a result, (40) can be simplified as

S̃j = (A−KCA)S̃j(A− LjCA)T

+ (I −KC)Q(I − LjC)T +KRLTj .

Hence, by Lemma 4, S̃j = P for all j = 1, . . . ,m, which
implies that [

F1 · · · Fm
]
W̃ = PHT . (41)

On the other hand, it is easy to show that the optimal solution
of (26) is given by

x̌(k) = (HT W̃−1H)−1HT W̃−1

 x̂1(k)
...

x̂m(k)

 .
By (41),

HT W̃−1 = P−1
[
F1 · · · Fm

]
,

HT W̃−1H = P−1
m∑
i=1

Fi = P−1.

Therefore, x̌(k) =
∑m
i=1 Fix̂i(k) = x̂(k). Similarly, one can

prove the relationship between ě(k) and ẽ(k).
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