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Dynamic State Estimation in the Presence of

Compromised Sensory Data

Yorie Nakahira, Yilin Mo

Abstract

In this article, we consider the state estimation problem of a linear time invariant system in

adversarial environment. We assume that the process noise and measurement noise of the system are l∞

functions. The adversary compromises at most γ sensors, the set of which is unknown to the estimation

algorithm, and can change their measurements arbitrarily. We first prove that if after removing a set of

2γ sensors, the system is undetectable, then there exists a destabilizing noise process and attacker’s input

to render the estimation error unbounded. For the case that the system remains detectable after removing

an arbitrary set of 2γ sensors, we construct a resilient estimator and provide an upper bound on the l∞

norm of the estimation error. Finally, a numerical example is provided to illustrate the effectiveness of

the proposed estimator design.

I. INTRODUCTION

The increasing use of networked embedded sensors to monitor and control critical infras-

tructures provides potential malicious agents with the opportunity to disrupt their operations by

corrupting sensor measurements. Supervisory Control And Data Acquisition (SCADA) systems,

for example, run a wide range of safety critical plants and processes, including manufacturing,

water and gas treatment and distribution, facility control and power grids. A wide variety of

motivations exist for launching an attack on the such systems, ranging from financial reasons,

e.g., reducing the electricity bill, all the way to terrorism, e.g., threatening the life of possibly an

entire population by controlling electricity and other life-critical resources. A successful attack
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to such kind of systems may significantly hamper the economy, the environment, and may even

lead to the loss of human life.

The first-ever SCADA system malware (called Stuxnet) was found in July 2010 and rose

significant concern about SCADA system security [1], [2]. The research community has ac-

knowledged the importance of addressing the challenge of designing secure estimation and

control systems [3].

We consider a secure estimation problem inspired by security concerns that arise from the

possible manipulation of sensory data. We model the underlying system as a linear time invariant

system. The goal is to estimate the state of the system via the measurements collected by m

sensors, with the caveat that some of these measurements can be manipulated by a malicious

third party. The adversary can only manipulate at most γ sensors due to resource limitations.

However, it has total control over the corrupted sensors, as it can change the measurements

of the compromised sensors arbitrarily. Our goal is to construct a “resilient” estimator, whose

estimation error remains bounded regardless of the noise process and the attacker’s action.

We first prove that if after removing a set of 2γ sensors, the system becomes undetectable,

then no resilient estimator exists, which serves as a fundamental limitation on the estimation

performance. On the other hand, we provide a resilient estimator design when the system remains

detectable even after removing any arbitrary set of 2γ sensors. We further derive an upper bound

on the “worst-case” estimation error of the proposed estimator.

Related Work

The problem of detecting and isolating abnormalities in the systems has been extensively

studied in the literature. Bad data detection and identification techniques have been widely used

in large scaled systems such as power grids [4]. While such approaches are very successful in

detecting and removing random sensor failures, they are not effective against intelligent attacks.

Liu et al. [5] illustrate how an adversary can inject a stealthy input into the measurements to

change the state estimation, without being detected by the bad data detector. Sandberg et al. [6]

consider how to find a sparse stealthy input, which enables the adversary to launch an attack

with a minimum number of compromised sensors. Xie et al. [7] further illustrate that the stealthy

integrity attacks on state estimation can lead to a financial gain in the electricity market for the

adversary. In the context of dynamical systems, a substantial amount of research efforts has
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been devoted to Failure Detection and Identification (FDI) algorithms [8], [9]. Recently, FDI

techniques have been applied in the security settings by Pasqualetti et al. [10], [11], Sundaram

et al. [12] and Fawzi et al. [13] to detect and identify malicious behaviors in consensus networks,

power grids, wireless control networks and control systems.

On the other hand, robust estimation techniques can be used to generate the state estimation

which is resilient to uncertainties and abnormalities in the sensory data. For static estimation,

robust estimators such as M-estimator, L-estimator, R-estimator and etc. have been proposed and

widely studied [14], [15], [16]. However, these estimators usually assume that the outliers of the

sensory data are generated independently by some other probability distribution different from

the model assumptions, which may not hold in an adversarial environment. In security settings,

Mo and Sinopoli [17] propose a robust estimator design, which minimizes the mean squared

estimation error under the worst possible attack scenarios.

For dynamical systems, robust techniques such as H∞,H2, L1 estimation and control have

also been an active research area for the past decades [18], [19]. Many researches in this field

assume that the noise or the disturbance of the system lies in a normed space, e.g., l2 or l∞,

while the output of the system also belongs to a normed space. Hence, the whole system can be

viewed as a linear operator that maps the disturbance to the output. The goal of a robust design

is thus to minimize the induced operator norm of the system in order to minimize the effect

of the noise/disturbance on the system output. In security setting, we believe that it is more

reasonable to model the bias injected by the adversary on the sensory data as a sparse input

rather than a bounded input, since the adversary can change the compromised sensor readings

arbitrarily. Therefore, the result presented in this paper can be seen as a generalization of the

robust estimation framework to include both bounded and sparse disturbances.

The problem of dynamic state estimation in the presence of compromised sensory data has

also been studied in [13] for noiseless system and extended to system subject to bounded noise

and modeling errors in [20]. The main difference between the estimator design discussed in

this paper and the ones proposed in [13], [20] is that our estimator leverages all the sensory

data collected from time 0 to perform the state estimation. On the other hand, the estimation

proposed in [13], [20] only uses a finite history of the sensor measurements. As a result, in this

paper, we only requires the system to be detectable after remove any set of 2γ sensors in order

to construct a resilient estimator, while in [13], [20], the requirement is restricted to the system
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being observable after the removal of an arbitrary set of 2γ sensors.

The rest of the paper is organized as follows: Section II describes some preliminary result

on the l1 operator norm of linear systems. Section III formulates the dynamic state estimation

problem with compromised sensory data. In Section IV, we prove a condition under which

no resilient estimator exists. When the condition fails to hold, we propose a resilient estimator

design and provide upper bound on its worst-case estimation error in Section V. The performance

of the proposed estimator is further illustrated via a numerical example in Section VI. Finally,

Section VII concludes the paper.

Notations

• Let N be the set of non-negative integers and C be the set of complex numbers. For any

x ∈ C, denote its real part as Re(x) and its absolute value as |x|.
• For a discrete set I, let |I| be the cardinality of the set.

• For a vector x ∈ Rn, denote {x}i = xi to be its ith element. For a matrix M ∈ Rn×m,

denote {M}i to be its ith row.

• We denote restriction of an infinite sequence {x(t)}t∈N to its first T elements with x(0 : T ),

i.e.,

x(0 : T ) , (x(0), . . . , x(T )).

The infinity norm of the finite sequence x(0 : T ) is defined as

‖x(0 : T )‖∞ , max
0≤t≤T

max
i
|xi(t)|.

The infinity norm of an infinite sequence x = x(0 :∞) is defined as

‖x‖∞ , sup
t∈N

max
i
|xi(t)|.

We denote ln∞ as the space of infinite sequences of n-dimensional vectors with bounded

infinity norm. We will write l∞ when there is no confusion on dimension of the vector.

• For any matrix A ∈ Rm×n. We denote its induced norm as

‖A‖i = sup
x 6=0

‖Ax‖∞
‖x‖∞

= max
i

∑
j

|aij|.

• Given a infinite sequence {x(t)}t∈N, let supp(x) , {i : ∃t s.t. xi(t) 6= 0} and we define

||x||0 = |supp(x)|.
• Let ∗ be the convolution operator, i.e., y = K ∗ u is defined as y(t) =

∑t
τ=0K(τ)u(t− τ).
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II. PRELIMINARY

Consider a linear time-invariant (LTI) system

x(t+ 1) = Ax(t) +Bw(t), x(0) = 0 (1)

y(t) = Cx(t) +Dw(t),

with x(t) ∈ Rn, w(t) ∈ Rp and y(t) ∈ Rm. The matrices A, B, C, D are real matrices with

proper dimensions. Define the following function H : N→ Rm×p:

H(t) ,

{
D t = 0

CAt−1B t ≥ 1
. (2)

Hence, y = H ∗ w. With slight abuse of notation, denote

H ,

 A B

C D

 . (3)

If A is strictly stable, H is a bounded operator with its l∞ induced norm being [19]:

‖H‖1 , sup
||w||∞ 6=0

||y||∞
||w||∞

= max
1≤i≤n

p∑
j=1

∞∑
t=0

|hij(t)|.

Therefore, for any ||w||∞ ≤ ε, we have

||y||∞ ≤ ||H||1ε. (4)

On the other hand, if (A,C) is detectable, then we know there exists an K ∈ Rn×m, such

that A+KC is strictly stable. Now consider the following linear estimator:

x̂(t+ 1) = Ax̂(t)−K(y(t)− Cx̂(t)), x̂(0) = 0. (5)

Define the corresponding estimation error and the residue vector as

e(t) , x(t)− x̂(t), r(t) , y(t)− Cx̂(t). (6)

The following lemma provides bounds on the e(t) and r(t):

Lemma 1. For the estimator defined in (5) with A + KC is strictly stable, the following

inequalities hold:

||e||∞ ≤ ||E(K)||1ε, (7)

||r||∞ ≤ ||G(K)||1ε. (8)
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where

E(K) =

 A+KC B +KD

I 0

 ,
G(K) =

 A+KC B +KD

C D

 .
Proof. Manipulating (5), we have

e(t+ 1) = (A+KC)e(t) + (B +KD)w(t), e(0) = 0,

r(t) = Ce(t) +Dw(t).

Therefore, (7) and (8) can be derived from (4).

The following lemma characterizes the infinite norm of a finite sequence of the states:

Lemma 2. Consider system (1) with a detectable pair of (A,C) and ||w||∞ ≤ ε. If y(t) = 0 for

all t = 0, 1, · · · , T , then

||x(0 : T )||∞ ≤ inf
K:A+KC strictly stable

||E(K)||1ε (9)

Proof. The assumption that (A,C) is detectable implies the existence of K such that A+KC is

strictly stable. For such a stabilizing K, we construct a state estimator from (5). The condition

y(0 : T ) = 0 implies that x̂(0 : T ) = 0. Therefore, by Lemma 1 we have

‖x(0 : T )‖∞ = ‖x(0 : T )− x̂(0 : T )‖∞ = ‖e(0 : T )‖∞

≤ ‖e‖∞ ≤ ‖E(K)‖1ε.
(10)

Since (10) holds for all stabilizing K, we can take the infimum over all such K and get (9).

III. PROBLEM FORMULATION

We consider the state estimation problem for the following linear time invariant system:

x(t+ 1) = Ax(t) +Bw(t), x(0) = 0,

y(t) = Cx(t) +Dw(t) + a(t), (11)
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where the state x(t) ∈ Rn. y(t) = [y1(t), . . . , ym(t)]T ∈ Rm is the sensor measurements at time t

from m sensors, where yi(t) is the measurement from sensor i. We denote the set of all sensors

as S , {1, . . . ,m}. w(t) ∈ Rp represents the process noise and measurement noise. We assume

that the matrix
[
B
D

]
is full row rank, which implies that the noise is exciting all states and

measurements. a(t) is the bias injected by the adversary.

In this paper, we make the following assumptions:

A. The noise is l∞ bounded: ‖w‖∞ ≤ ε.

B. The adversary can change the readings from at most γ sensors. Therefore, the bias a(t)

satisfies ‖a‖0 ≤ γ. Let us denote the set of compromised sensors as C ⊂ S . The set

of “good” sensors is denoted as G , S\C. If sensor i is a good sensor, then ai(t) = 0

for all t.

We further assume that the system operator knows both ε and γ. However, it does not know

the exact set C of the compromised sensors.

Remark 1. One can also interpret the parameter γ as a design parameter for the system operator,

in the sense that the system operator wants to design an estimator that can tolerate at most γ

compromised sensors. In general, increasing γ will increase the resilience of the detector under

attack. However, a large γ may result in performance degradation during normal operation when

no sensor is compromised.

A causal state estimator can be defined an infinite sequence of mappings f , (f0, f1, . . . ),

where each ft maps past measurements y(0 : t− 1) to an estimate of the current state x̂(t), i.e.,

x̂(t) = ft(y(0 : t− 1)). We define e(t) to be estimation error at time t, i.e.,

e(t) , x(t)− x̂(t) = x(t)− ft(y(0 : t− 1)). (12)

Clearly, the sequence e depends on the noise process w, the bias a injected by the adversary

and the estimator f . As a result, we can write it as e(w, a, f, t). However, we will simply write

e(t) when there is no confusion. In this paper, we consider designing the estimator against the

worst w and a. To this end, let us define the worst-case estimation performance as

ρ(f) , sup
‖w‖∞≤ε, ‖a‖0≤γ, t

‖e(w, a, f, t)‖∞. (13)

Definition 1. An estimator f is called an resilient estimator if ρ(f) <∞.
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The diagram of the estimation problem discussed in this paper is illustrated in Fig 1. In the

next section, we provide a condition, under which there exists no resilient estimator. Later in

Section V, we prove that if such a condition fails to hold, then we can construct an resilient

estimator. We further provide upper bound on ρ(f).

B w D

(zI −A)−1 C Estimator e

a

x

+

y

x̂

−

Fig. 1. Diagram of the Estimation Problem in Adversarial Environment. z−1 is the unit delay.

IV. FUNDAMENTAL LIMITATION

In this section, we provide a condition under which there does not exist a resilient estimator.

Before continuing on, we need the following lemma:

Lemma 3. There does not exist a resilient estimator for system (11) if there exist infinite

sequences x, x′, w, w′, a, a′, y and y′ of proper dimension, such that the follwoing conditions

hold

1) x, a, w, y satisfy (11), with ‖w‖ ≤ ε and ‖a‖0 ≤ γ.

2) x′, a′, w′, y′ satisfy

x′(t+ 1) = Ax′(t) +Bw′(t), x′(0) = 0,

y′(t) = Cx′(t) +Dw′(t) + a′(t),

with ‖w′‖ ≤ ε and ‖a′‖0 ≤ γ.

3) y(t) = y′(t) for all t.

4) ‖x− x′‖∞ =∞.
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Proof. Let f be an arbitrary estimator. By the definition of e(w, a, f, t), we have

e(w, a, f, t) = x(t)− ft(y(0 : t− 1)),

e(w′, a′, f, t) = x′(t)− ft(y′(0 : t− 1)).

Since y(t) = y′(t) for all t, we know that ft(y(0 : t− 1)) = ft(y
′(0 : t− 1)). Therefore,

e(w, a, f, t)− e(w′, a′, f, t) = x(t)− x′(t).

By triangular inequality,

‖e(w, a, f, t)‖∞ + ‖e(w′, a′, f, t)‖∞ ≥ ‖x(t)− x′(t)‖∞.

Since ‖x− x′‖∞ =∞, we know that at least one of the following equality holds:

sup
t
‖e(w, a, f, t)‖∞ =∞, sup

t
‖e(w′, a′, f, t)‖∞ =∞

Therefore, by the definition of ρ(f), we know that ρ(f) = ∞ for all f , which implies the

nonexistence of resilient estimator.

To simplify notations, we introduce the following definition:

Definition 2. For any index set I = {i1, . . . , il} ⊆ S, we define the projection matrix PI to be

PI =
[
ei1 . . . eil

]T
∈ Rl×m,

where ei is the ith canonical basis vector of Rm. We further define the following vector yI(t)

by selecting the entries of y(t) with indices in I:

yI(t) , PIy(t).

Similarly, we define the following matrices:

CI , PIC, DI , PID.

We are now ready to state the main theorem on the nonexistence of the resilient estimator:

Theorem 1. Consider system (11) with assumption A-B. There does not exist a resilient estimator

if (A,CK) is not detectable for some set K ⊂ S with cardinality |K| = m− 2γ.
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Proof. Let K be a subset of S with cadinality m− 2γ, such that (A, CK) is not detectable. We

can find two index sets K1, K2 ⊂ S\K, such that

|K1| = |K2| = γ, K ∪ K1 ∪ K2 = S.

Since (A,C) is not detectable, there exists an unstable and unobservable eigenvector z ∈ Cn

and eigenvalue λ ∈ C of the matrix A, such that

Az = λz, CKz = 0, |λ| ≥ 1.

Since we assume that
[
B
D

]
is full row rank, we can find w∗ ∈ Cn, such thatB

D

w∗ =

z
0

 .
Without loss of generality, we can scale z such that each entry of w∗ has its absolute value to

be no greater than ε, i.e., |{w∗}i| ≤ ε for all i. Now let us consider the following noise process:

w(t) = Re
(
λt

|λ|tw0

)
.

One can verify that

‖w‖∞ ≤ sup
t,i

∣∣∣∣ λt|λ|t × {w∗}i
∣∣∣∣ ≤ ε.

Since A is real, the corresponding sequence of the state x generated by w is given by

x(t) =

0 t = 0

Re
[
λt−1

(
1 + 1

|λ| + · · ·+ 1
|λ|t−1

)
z
]

t > 0
.

One can verify that ‖x‖∞ =∞ for both |λ| > 1 and |λ| = 1. Now by the fact that C,D matrices

are real, we have

CKx(t) +DKw(t) = 0.

Now let us construct a(t) =
[
a1(t) ... am(t)

]T , such that

ai(t) =

0 i ∈ K ∪ K2

−{C}ix(t) i ∈ K1

.
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Clearly ‖a‖0 ≤ |K1| = γ. The corresponding y(t) satisfies

yi(t) =

0 i ∈ K ∪ K1

{C}ix(t) i ∈ K2

.

Now let us consider another sequences of noise w′ = 0. Therefore, the corresponding x′ = 0.

Let us construct the bias a′ injected by the adversary as

a′i(t) =

0 i ∈ K ∪ K1

{C}ix(t) i ∈ K2

.

One can verify that ‖a′‖0 ≤ |K2| = γ. The corresponding y′(t) satisfies

y′i(t) =

0 i ∈ K ∪ K1

{C}ix(t) i ∈ K2

.

Therefore, we have y = y′ and ‖x−x′‖∞ = ‖x‖∞ =∞, which implies the nonexistence of any

resilience estimator by Lemma 3.

V. ESTIMATOR DESIGN AND ANALYSIS

This section is devoted to the construction of a resilience estimator f and characterization

of the corresponding worst-case performance ρ(f). By Theorem 1, we know that the following

assumption is necessary for the existence of the resillient estimator.

C. (A,CK) is detactable for any K ⊂ S with cardinality n− 2γ

Therefore, we will assume that Assumption C holds throughout the section.

A. State Estimator Design

We propose the following estimator design for system (11) under the Assumption A-C.

1) Local Estimator and Detector: Let I = {i1, · · · , im−γ} ⊂ S be a index set with cardinality

n− γ. Denote the collection of all such index sets as

L , {I ⊂ S : |I| = m− γ}.
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For any I ∈ L, Assumption C implies the existence of KI such that A + KICI is strictly

stable. Therefore, we can construct a stable “local” estimator, which only uses the truncated

measurement yI(t) to compute the state estimate1:

x̂I(t+ 1) = Ax̂I(t)−KI(yI(t)− CI x̂I(t)), (14)

with initial condition x̂I(0) = 0.

For each local estimator, let us define the corresponding error and residue vector as

eI(t) , x(t)− x̂I(t), rI(t) , yI(t)− CI x̂I(t). (15)

we define the corresponding linear operators as follows:

EI(KI) ,

 A+KICI B +KIDI

I 0

 , (16)

GI(KI) ,

 A+KICI B +KIDI

CI DI

 . (17)

By Lemma 1, we know that if aI(t) = 0 for all t, i.e., if I does not contain any compromised

sensors, then the following inequality holds:

||rI ||∞ ≤ ||GI(KI)||1ε. (18)

As a result, we will assign each local estimator a local detector, which checks if the following

inequality holds at each time t:

||rI(0 : t)||∞ ≤ ||GI(KI)||1ε. (19)

If (19) fails to hold, then we know the set I contains at least 1 compromised sensor and hence

the local estimate x̂I(t) is corrupted by the adversary.

On the other hand, we call x̂I(t) a valid local estimate from time 0 to t if (19) holds at time

t. We further define the set L(t) as

L(t) , {I ∈ S : (19) holds at time t}. (20)

Remark 2. Notice that (19) is only a sufficient condition for the index set I to contain compro-

mised sensors and it is not necessarily tight. One can potentially design better local detectors

1We use superscript notation for xI and KI in order to differentiate it from projection, which is written as subscript.
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to check if there exist compromised sensors in the index set I to provide better performance.

However, the local detector based on (19) is suffice for us to design a resilient estimator.

2) Global Data Fusion: We will then fuse all the valid local estimation x̂I(t) at time t to

generate the state estimate x̂(t). Since we are concerned with the infinite norm of the estimation

error, we will use the following equation to compute each entry of x̂(t):

x̂i(t) =
1

2

(
min
I∈L(t)

x̂Ii (t) + max
I∈L(t)

x̂Ii (t)
)
. (21)

B. Upper Bound on the Worst-Case Estimation Error

We now provide an upper bound on the worst-case performance ρ(f) for our estimator design,

which is given by the following theorem:

Theorem 2. Under Assumption A-C, the state estimator described in Section V-A is a resilient

estimator for system (11). Furthermore, the following inequality on ρ(f) holds:

ρ(f) ≤ max
I,J∈L

(
‖EI(KI)‖1 +

1

2
αI∩J [βI(KI) + βJ (KJ )]

)
ε (22)

where αK is defined as

αK , inf
K:A+KCK strictly stable

∥∥∥∥∥∥
 A+KCK

[
I K

]
I 0

∥∥∥∥∥∥
1

,

and βI(KI) is defined as

βI(KI) , max(‖KI‖i, 1) ‖GI(KI)‖1.

Remark 3. It is worth noticing that if I does not contain compromised sensors, then minimizing

the infinite norm of the local estimation error eI(t) is equivalent to minimizing ‖EI(KI)‖1. The

second term on the RHS of (22) exists since the estimator does not know which local estimate

can be trusted at the beginning.

Several intermediate results are needed before proving Theorem 2. We first prove the following

lemma to bound the divergence of the local estimates:

Lemma 4. For any two index sets I, J ∈ L(T ), the following inequality holds:

‖x̂I(0 : T )− x̂J (0 : T )‖∞ ≤ εαI∩J [βI(KI) + βJ (KJ )]. (23)
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Proof. By (14), we have

x̂I(t+ 1) = Ax̂I(t)−KIrI(t), x̂I(t) = 0,

yI(t) = CI x̂
I(t) + rI(t). (24)

Let us define K = I ∩ J , we know that

yK(t) = CKx̂
I(t) + PK,Ir

I(t),

where PK,I ∈ R|K|×|I| is the unique matrix that satisfies:

PK = PK,IPI .

Now let us define φI(t) , −KIrI(t) and ϕI(t) , PK,Ir
I(t). If t ≤ T , we know that (19) holds

at time t, which implies that

‖rI(t)‖∞ ≤ ‖GI(KI)‖1ε.

As a result, ∥∥∥∥∥∥
φI(t)
ϕI(t)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
−KI
PK,I

∥∥∥∥∥∥
i

‖rI(t)‖∞ = βI(KI)ε,

where we use the fact that each row of PK,I is a canonical basis vector in R|I|. Therefore, we

have

x̂I(t+ 1) = Ax̂I(t) +
[
I 0

]φI(t)
ϕI(t)

 , x̂I(t) = 0,

yK(t) = CKx̂
I(t) +

[
0 I

]φI(t)
ϕI(t)

 . (25)

Similarly, we have

x̂J (t+ 1) = Ax̂J (t) +
[
I 0

]φJ (t)

ϕJ (t)

 , x̂J (t) = 0,

yK(t) = CKx̂
J (t) +

[
0 I

]φJ (t)

ϕJ (t)

 , (26)
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with ∥∥∥∥∥∥
φJ (t)

ϕJ (t)

∥∥∥∥∥∥ ≤ βJ (KJ )ε, ∀t ≤ T.

Now let us consider ∆x̂(t) = x̂I(t)− x̂j(t). By (25) and (26), we know that

∆x̂(t+ 1) = A∆x̂(t) +
[
I 0

]φI(t)− φJ (t)

ϕI(t)− ϕJ (t)

 , ∆x̂(t) = 0,

0 = CK∆x̂(t) +
[
0 I

]φI(t)− φJ (t)

ϕI(t)− ϕJ (t)

 .
Hence, (23) can be proved by Lemma 2.

Lemma 5. Let r1, . . . , rl be real numbers. Define

r =
1

2

(
max
i
ri + min

i
ri

)
.

Then for any i, we have

|r − ri| ≤
1

2
max
j
|rj − ri|. (27)

Proof. Without loss of generality, we assume that r1 and r2 are the largest and the smallest

number among all ris respectively. Therefore,

r − ri =
1

2
(r1 − ri)−

1

2
(ri − r2) .

Therefore, if r1 − ri ≥ ri − r2, then

|r − ri| = r − ri ≤
1

2
(r1 − ri) =

1

2
max
j
|rj − ri|.

Similarly, one can prove that (27) holds when r1 − ri < ri − r2.

Now we are ready to prove Theorem 2.

Proof. Let G ∈ L be the set of good sensors. By Lemma 1, we know that

‖x− x̂G‖∞ ≤ ‖EG(KG)‖1ε.

Furthermore, G ∈ L(t) for all t. At any given time t, assuming that the index set J also belongs

to L(t). By Lemma 4, we have

‖x̂G(t)− x̂J (t)‖∞ ≤ εαG∩J [βG(KG) + βJ (KJ )].
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Therefore, by Lemma 5, we know that

‖x̂(t)− x̂G(t)‖∞ ≤
1

2
max
J∈L(t)

εαG∩J [βG(KG) + βJ (KJ )]

≤ 1

2
max
J∈L

εαG∩J [βG(KG) + βJ (KJ )].

By triangular inequality, we have

‖e(t)‖∞ ≤ ‖EG(KG)‖1ε (28)

+
1

2
max
J∈L

αG∩J [βG(KG) + βJ (KJ )]ε.

Thus, by taking the supremum over all possible “good” sensor set G, we can prove (22).

Combining Theorem 1 and Theorem 2, we have the following corollary:

Corollary 1. A necessary and sufficient condition for the existence of a resilient estimator is

that (A,CK) is detectable for any index set K ⊂ S with cardinality 2γ.

VI. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate our resilient estimator design.

We choose the following parameters for the system:

A = 1, C =


1

1

1

 , B =
[
1 0 0 0

]
, D =

[
0 I

]
.

We further assume that ε = 1 and γ = 1. First, we consider designing a linear estimator

described in (5) in non-adversarial settings. Due to symmetry, we assume that the estimation

gain K =
[
θ θ θ

]
, where θ ∈ R. As a result, one can check that the l1 norm of E(K) satisfies:

‖E(K)‖1 =
1 + |3θ|

1− |1 + 3θ| ,

where |1 + 3θ| < 1 in order to ensure the stability of the estimator. The optimal θ, which

minimizes ‖E(K)‖1, is given by θ = −1/3. The optimal ‖E(K)‖1 equals 2. Therefore, the

estimator for the non-adversarial environment can be written as:

x̂(t+ 1) = x̂(t) +
1

3

[
1 1 1

]
(y(t)− Cx̂(t)), x̂(0) = 0. (29)
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We now consider our resilient estimator design in adversarial environment. To this end, we

need to compute the gain K{1,2}, K{2,3}, K{3,1}. Due to symmetry, we will only consider the

gain of the following form:

K{1,2} = K{2,3} = K{3,1} =
[
µ µ

]
.

One can check that αK = 2 for K = {1}, {2}, {3} and

‖EI(KI)‖1 =
1 + |2µ|

1− |1 + 2µ| , ‖G
I(KI)‖ = 1 +

1 + |2µ|
1− |1 + 2µ| .

where µ ∈ (−1, 0) to ensure the stability of the local estimator. As a result,

βI(KI) = 1 +
1 + |2µ|

1− |1 + 2µ| .

Hence, the upper bound on the worst-case estimation error is

ρ(f) ≤ 2 + 3× 1 + |2µ|
1− |1 + 2µ| . (30)

The optimal µ which minimizes the RHS of (30), is µ = −0.5 and the corresponding upper

bound is 8.

We now compare the performance of the estimator (29) and the resilient estimator. To this end,

we randomly generate w(k) from a uniform distribution on the set ‖w(k)‖∞ ≤ 1. We assume

that the adversary compromise the first sensor and add an increasing bias a(t) =
[
0.5t 0 0

]T
.

The trajectory of the estimation error of the estimator (29) and the resilient estimator is plotted

in Fig 2 and Fig 3 respectively.

One can see that the error for the estimator (29) grows linearly and becomes unbounded. On

the other hand, our resilient estimator will detect that the index sets {1, 2} and {1, 3} contain

the compromised sensor and hence discard the corresponding local estimates. As a result, the

estimation error remains bounded.

VII. CONCLUSION

In this paper, we consider the problem of estimating the state of a linear time invariant system,

which is driven by l∞ noise, in the presence of compromised sensory data. We prove a necessary

and sufficient condition for the existence of a resilient estimator. When such a condition holds,

we propose a resilient estimator design and provide an upper bound on its worst-case estimation

error. Future works include extending the noise model from bounded noise to stochastic noise

and investigating the computational aspect of the resilient estimator design.
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Fig. 2. The estimation error of the estimator (29).
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Fig. 3. The estimation error of the resilient estimator. The blue, teal and black line correspond the estimation errors for 3

local estimators, while the red line is the estimation error after fusion. The teal and black line terminate at time 4 and time 12

respectively when the corresponding local detector detects a violation of (19).
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