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Abstract— A substantial amount of research on the security
of cyber-physical systems assumes that the physical system
model is available to the adversary. In this paper, we argue that
such an assumption can be relaxed, since even if the physical
system model is unknown, the adversary might still be able
to identify it by observing the control input and sensory data
from the system. In such a setup, the attack with the goal
of identifying the system model using the knowledge of input-
output data can be categorized as a Known-Plaintext Attack
(KPA) in the information security literature. We first prove a
necessary condition and a sufficient condition, under which the
adversary can successfully identify the transfer function of the
physical system. Furthermore, we design an algorithm, which is
based on spectral factorization, for the adversary to numerically
compute the physical system model. We then provide a low-rank
controller design which renders the system unidentifiable to the
adversary, while trading off the LQG performance. Finally, a
numerical example is provided to illustrate the effectiveness of
the proposed controller design.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) refer to the embedding of
widespread sensing, networking, computation, and control
into physical spaces with the goal of making them safer,
more efficient and reliable. Driven by the miniaturization and
integration of sensing, communication, and computation in
cost effective devices, CPSs are bound to transform several
industries such as aerospace, transportation, built environ-
ment, energy, health-care, and manufacturing, to name a
few. While the use of dedicated communication networks
has so far sheltered systems from the outside world, use
of off-the-shelf networking and computing, combined with
unattended operation of a plethora of devices, provides
several opportunities for malicious entities to inject attacks
on CPSs. A wide variety of motivations exist for launching
an attack on CPSs, ranging from economic reasons such
as drawing a financial gain, all the way to terrorism. Any
attack on safety-critical CPSs may significantly hamper the
economy and lead to the loss of human lives. While the
threat of attacks on CPSs tends to be underplayed at times,
the Stuxnet worm provided a clear sample of the future to
come [1], [2].

A substantial amount of research effort has been dedicated
to identifying possible security vulnerabilities of the CPS and
develop countermeasures. To this end, many attack models,
such as stealthy attack1 [3], [4], [5], [6], [7], replay attack [8],
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[9] and covert attack [10], have been proposed by various
researchers. Teixeira et al. [11] propose a characterization
of different attack models based on the attacker’s resources,
which are divided into three different categories: knowledge
of the system model, knowledge of the real-time control
and sensory data (disclosure resources) and the capability to
modify the control and sensory data (disruptive resources).
Their results illustrate that many attack models proposed in
the literature require the knowledge of the system models
from the adversary. For example, in the stealthy attack
scenario [5], the adversary will inject an external control
input to the physical system and then remove the physical
system’s response to this malicious input from the sensors’
measurements. The system operator will not be able to detect
the attack if the response to the malicious control input
is removed perfectly. However, such an attack requires the
adversary to know the perfect model of the physical system,
which may be difficult to acquire in many practical scenarios,
since the modelling information is usually stored inside
the controller. On the other hand, we argue that in many
situations, the control and sensory data are much easier to
acquire. This is due to the fact that these data are typically
not encrypted for many CPSs [12]. Furthermore, even if the
control and sensory data are encrypted, it might be easier
to break the security of sensors and actuators due to their
low computational capability. Thus, for the adversary, the
disclosure resources may be more available than the model
knowledge.

In this paper, we discuss whether the adversary can use
its disclosure resources to gain the model knowledge by the
means of system identification. We model the CPS as a linear
feedback control system, which is illustrated in Fig 1. The
adversary is assumed to only use its disclosure resources. In
other words, it can only passively observe the control input u
and the sensory data y and cannot inject any disturbances to
the system. The goal of the adversary is to learn the physical
system model G(z), which further enables the adversary to
launch other attacks, such as stealthy attack and covert attack.

Such an attack model is very similar to the Known-
Plaintext Attack (KPA) studied in information security,
where the adversary has samples of both the plaintext and the
corresponding ciphertext and want to deduce the encryption
key. For our case, one can view the system model, the control
input u and the sensory data y as the encryption key, plaintext
and ciphertext respectively.

It is worth mentioning that with additional disruptive
resources, the adversary can also launch a more powerful
Chosen-Plaintext Attack (CPA), where it can actively modify



w(k) H(z)

G(z)

v(k)

K(z)

y(k)u(k)

Fig. 1. A general diagram of the CPS. In particular, we consider a widely-
used LQG framework in this paper. G(z) represents the plant while K(z)
the controller.

the control input u and observe the corresponding system
output y. However, if the attacker changes the control input u
carelessly, it may result in a substantial change in the sensor
measurement y, which could enable the system to detect the
presence of the malicious third party. If the stealthiness of
the attack is of concern to the attacker, then a reasonable
strategy of the adversary is to first launch a passive KPA
without risking being detected. After a coarse system model
is learned, the attacker can then design a stealthy control
input u to identify a more accurate model. In such a scenario,
the KPA is the first step for the adversary to gain model
knowledge.

As a result, we will focus on KPA in this paper. The main
contributions of the paper are twofold:

1) We provide a necessary condition and a sufficient
condition, under which the system is vulnerable to
KPA, i.e., the adversary can successfully identify the
system model G(z). The results can be viewed as
an application of classical system identification [13],
[14], [15], [16], [17], [18] for the closed-loop system
described in Section III.

2) We design a countermeasure to KPA by using a “low-
rank” controller design strategy for K(z) while trading
off the LQG control performance.

The rest of the paper is organized as follows: In Section II,
we model the system as a linear feedback control system
subject to Gaussian process and measurement noise. In
Section III, we provide necessary and sufficient conditions,
under which the adversary can identify the system model
G(z). We further provide a numerical algorithm for the
adversary to compute G(z). In Section IV, we present a
controller design which is resilient to KPA while only
incurring minimal control performance loss. The efficiency
of the proposed control design is illustrated via a numerical
example in Section V. Finally, Section VI concludes the
paper.

Notations

A � B : A − B is a positive semi-definite matrix.
E : expected value. Sn : the set of n × n symmetric
matrices. If U is a positive semidefinite matrix, then U1/2 is
a positive semidefinite matrix that satisfies U1/2U1/2 = U .

We will use calligraphic letters to denote transfer matrices
and normal letters to denote constant matrices. A rational
transfer function is called to be proper if the degree of the
numerator does not exceed the degree of the denominator. It
is called strictly proper if the degree of the numerator is less
than the degree of the denominator. For a rational transfer
matrix V(z), we define V∗(z) = VT ( 1

z ).

II. SYSTEM MODEL

We model the physical system has a linear time invariant
system, which takes the following form:

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)
y(k) = Cx(k) + v(k), (2)

where x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rm are the state, the
control input and the sensor measurement at time k respec-
tively. w(k) ∈ Rn, v(k) ∈ Rm are the process and mea-
surement noise at time k. We assume that w(k), v(k), x(0)
are jointly independent zero mean Gaussian random variables
with covariance Σ, Q and R respectively. We further assume
that Q,R � 0 are strictly positive definite and (A,B) is
stabilizable and (A,C) is detectable.

From system model in (1), we can write down the relation
between sensor measurement y and the control input u and
the noise process w and v as follows:

y(k) = G(z)u(k) +H(z)w(k) + v(k), (3)

in which G(z) , C(zI−A)−1B and H(z) , C(zI−A)−1,
and z−1 is the unit delay. We assume that the controller is
also a linear time invariant controller. Therefore, the control
input can be written as

u(k) = K(z)y(k). (4)

We restrict the future discussions to the controller that
satisfies the following assumption:

Assumption 1. [Controller] The transfer function of the con-
troller K(z) is a proper rational function of z. Furthermore,
the closed-loop system is asymptotically stable.

Remark 1. If we assume that K(z) is rational, then K(z)
being proper is equivalent to the controller being causal.
Moreover, the limit limz→∞K(∞) <∞ is well-defined. For
the closed-loop system, since G(z) is a strictly proper trans-
fer function, it follows that limz→∞ G(z)K(z) = 0, which
implies that I − G(z)K(z) is invertible almost everywhere.

We assume that an adversary passively observes the con-
trol input u(k) and the sensory data y(k) from time 0 to
∞. The goal of the adversary is to infer the physical system
model G(z) from u(k) and y(k).

III. KPA IN CPS
In this section, we shall first apply closed-loop system

identification technique to the CPS and investigate the iden-
tifiability condition of G(z) and K(z) in Section III-A and
then propose an algorithm to achieve so in Section III-B.
A stealthy attack which is enabled by KPA is discussed in
Section III-C.



A. On the identifiability of G(z), K(z)

This subsection is devoted to deriving the identifiability
condition of G(z) and K(z). The identifiability of such sys-
tems have been investigated based on spectral factorization.

Definition 1. Let e(k) = (e1(k), .., eN (k))T be a N -
dimensional discrete-time, zero-mean, wide-sense stationary
random process. For any τ ∈ Z, define its autocorrelation
function Re(τ) and power spectral density Φe(z) as

Re(τ) , E[e(0)eT (τ)] = E[e(k)eT (k + τ)].

Φe(z) ,
∞∑

τ=−∞
Re(τ)z−τ .

Since we assume that the closed-loop system is asymptoti-
cally stable,

[
y(k)
u(k)

]
converges to a stationary process. Hence,

the adversary can compute (or estimate) the joint power
spectral density Φy,u for the limiting stationary process, if it
observes the system for a sufficient amount of time. By (3)
and (4), we know that Φy,u satisfies the following equation:

Φy,u(z) = C(z)
[
Q 0
0 R

]
C∗(z). (5)

where the closed-loop transfer function C(z) has the follow-
ing form

C(z) =

[
C11(z) C12(z)
C21(z) C22(z)

]
(6)

,

[
(I − GK)−1H (I − GK)−1

K(I − GK)−1H K(I − GK)−1

]
.

Assumption 2. C(z) is asymptotically stable and minimum
phase, i.e., all the poles and zeros of C(z) lie strictly inside
the unit disk.

Remark 2. This is a commonly adopted assumption for
input-output stability and internal stability.

We first consider the identifiability of C(z) from the joint
spectral density Φy,u.

Lemma 1. Under the Assumption 1 and 2, if there exists
C(z), Q, R and Ĉ(z), Q̂, R̂ that lead to the same Φy,u, then
there exists a unitary matrix V11, such that

Ĉ11(z) = C11(z)V11, Ĉ12(z) = C12(z),

Ĉ21(z) = C21(z)V11, Ĉ22(z) = C22(z),

Q̂ = V ∗11QV11, R̂ = R. (7)

Proof. See Appendix.

We now consider the identifiability of G(z), K(z) and
H(z) from C(z). Before continuing on, we need the fol-
lowing definition:

Definition 2. We define the normal rank of a transfer matrix
A(z) to be the maximum rank of A(z) over all z ∈ C.

Proposition 1. Given C(z), the following transfer functions
can be uniquely specified :

K(z) = C22(z)C−112 (z),

H(z) = C−112 (z)C11(z),

G(z)K(z) = I − C−112 (z).

(8)

If K(z) has full normal row rank then G(z) can be uniquely
determined from the following equality

G(z) = (I − C−112 (z))K†(z), (9)

where K†(z) is the unique transfer matrix satisfies
K(z)K†(z) = I .

Proof. This is straightforward from the definition of C(z).

Based on Lemma 1 and Proposition 1, we have the
following theorem about the identifiability of G(z) and K(z).

Theorem 1. Consider the feedback control scheme described
in Sec II. Under the Assumption 1 and 2, the following
statements hold:
• G(z)K(z) and K(z) are uniquely identifiable;
• R is uniquely identifiable;
• H(z) and Q can be identified up to the following

transformation

Ĥ(z) = H(z)V11

Q̂ = V ∗11QV11,
(10)

in which V11 is a unitary matrix.
Furthermore, if K(z) if full normal row rank, then G(z) is
uniquely identifiable.

Proof. Let C(z) be the true closed-loop transfer function. By
Lemma 1, any Ĉ(z) we derive from Φy,u must satisfy (7).
Hence, by Proposition 1,

K̂(z) = Ĉ22(z)Ĉ−112 (z) = C22(z)C−112 (z) = K(z),

which implies that K(z) is uniquely identifiable. The other
statements can be proved by similar arguments.

We now provide a sufficient condition under which the
system is not identifiable by the adversary:

Theorem 2. Let w(k), v(k) be a realization of the noise
process and x(k), y(k), u(k) be the corresponding system
state, sensor measurements and control input that satisfy (1),
(2) and (3). If K(z) can be factorized into

K(z) = F K̃(z), (11)

where F ∈ Rp×q is a constant matrix with q < p and K̃(z) ∈
Cq×m is a transfer function, then there exists a matrix B̂ 6=
B, such that the following equalities hold for B̂:

x(k + 1) = Ax(k) + B̂u(k) + w(k),

y(k) = Cx(k) + v(k), u(k) = K(z)y(k).

Proof. Since q < p, F is not full row rank, which implies
the existence of a real matrix ∆B 6= 0, such that ∆BF = 0.
One can verify that B̂ = B+∆B is the required matrix.



Remark 3. Clearly, if the factorization described by (11)
is possible, then the adversary cannot tell the difference
between the physical system model G(z) = C(zI − A)−1B
and Ĝ(z) = C(zI −A)−1B̂ since they share the same input
and output relation. This is due to the fact that the controller
only inject the control input that lies in the column space of
F and hence there are some ambiguities in the B matrix.

It is worth noticing that (11) implies that K(z) is not full
normal row rank. In fact, the normal rank of K(z) is at most
q. On the other hand, a non full normal row rank matrix K(z)
can always be decomposed as K(z) = F(z)K̃(z), where
F(z) is a p by q transfer matrix with q < p. Therefore,
there exists a gap between Theorem 1 and 2. This is due to
the fact that even though K(z) is not right invertible, which
implies that the adversary cannot directly compute G(z) from
G(z)K(z) and K(z), the adversary could potentially use side
information to infer G(z) (for example, G(z) = H(z)B.) We
are planning to investigate the gap and tighten Theorem 1
and Theorem 2 in the future work.

B. Identification algorithm

This subsection is devoted to providing a numerical algo-
rithm for the adversary to derive G(z) when K(z) is full nor-
mal row rank, which is based on spectral factorization [19].

Since the feedback system is asymptotic stable, Φy,u(z)
has no poles on the unit circle. Consider a Mobius transform
z = 1+s

1−s and let Ψy,u(s) = Φy,u

(
1+s
1−s

)
, then for Ψy,u(s)

there exists a positive real matrix S(s) [17], such that

S(s) + ST (−s) = Ψ(s) =W(s)WT (−s). (12)

Definition 3 (Global Minimality). For a given spectral
density Ψ(s), the globally-minimal degree is the smallest
degree of all its spectral factors W(s).

Any system of globally-minimal degree is said to be
globally minimal. Anderson [18] provides an algebraic char-
acterization of all realizations of all spectral factors as
follows. Minimal realizations of S are related to globally-
minimal realizations of spectral factors of Ψ by the following
lemma.

Lemma 2 ([18]). Let (A,Bs, C,Ds) be a minimal real-
ization of the positive-real matrix S(s) of (12), then the
system (A,B,C,D) is a globally-minimal realization of a
spectral factor of Ψ(s), i.e.,W(s) if and only if the following
equations hold:

RAT +AR = −BBT

RCT = Bs −BDT

2Ds = DDT

(13)

for some positive-definite and symmetric matrix R ∈ Rn×n.

For a properly chosen R, W(s) can be computed from
its realization. Since W

(
z−1
z+1

)
= C(z)D1/2J , C(z)D̂, for

some signed identity matrix J [20]

lim
z→∞

W
(
z − 1

z + 1

)
=

[
0 I
0 0

]
D̂. (14)

We partition W and D̂ to four blocks with corresponding
dimensions as C in (6). Then it follows that

D̂22 = lim
z→∞

W12

(
z − 1

z + 1

)
. (15)

Finally, once D̂22 is obtained, we can obtain an estimate
closed-loop transfer function

Ĉ(z) =W
(
z − 1

z + 1

)[
I 0

0 D̂−122

]
, (16)

and the transfer functions for plant and controller, G(z), K(z)
using (8).

We summarize the identification procedure to the follow-
ing Algorithm 1.

Algorithm 1 Identification algorithm for G(z), K(z)

Inputs: Input-output data yk and uk.
Outputs: The transfer functions G and K.

Step 1. Compute Φy,u(z) from input-output data yk and uk
and let Ψy,u(s) = Φy,u( 1+s

1−s );

Step 2. Each element in Ψ[i, j](s) can be expanded as a
sum of partial fractions and a term Ψ[i, j](∞). Those partial
fractions with poles in Re[s] < 0 may then be summed
together, and when add to 1

2Ψ[i, j](∞) yield S[i, j](s);

Step 3. Compute W(s) from (13) for a minimal realization
of S(s) and a properly chosen R � 0.

Step 4. Compute D̂22 based on W
(
z−1
z+1

)
from (15).

Step 5. Once an estimate Ĉ(z) is computed using (16) and
we can obtain G(z) and K(z) using (8).

Remark 4. Since the main theme of this paper is to bring up
the potential security issue in the classic feedback systems
and propose a new control architecture which is robust
to such attacks, the following numerical issues in spectral
factorization are out of the scope of this paper, i..e., how
the estimate of Φy,u(z) depends on the number of samples
and how this error would propagate into the identification
of G(z) and K(z).

C. What can the attacker do after KPA?

In this section, we briefly describe a stealthy attack on the
CPS after the adversary has obtained the transfer function
G(z). The goal of this subsection is to demonstrate that KPA
can enable other attacks discussed in the literature. For more
detailed discuss on stealthy attack, please refer to [5].

We assume that the adversary compromised a subset of
actuators and sensors and can change the corresponding
control inputs and sensor measurements respectively. As a
result, the system equation becomes:

x(k + 1) = Ax(k) +B [u(k) + Γuu
a(k)] + w(k),

y(k) = Cx(k) + v(k) + Γyy
a(k),

u(k) = K(z)y(k),



where ua(k) and ya(k) is the bias on the control inputs and
the sensor measurements injected by the adversary at time k.
Γu (Γy) is a diagonal matrix with binary diagonal elements,
such that the ith diagonal elements is 1 if and only if the
ith actuator (sensor) is compromised by the attacker. Since
the matrices Γu and Γy represent the set of compromised
actuators and sensors, they are known to the attacker. Let us
define

Ga(z) , C(zI −A)−1BΓu = G(z)Γu.

Clearly, the whole trajectory of the sensor measurements
y is a function of the noise process w, v, the initial condition
x(0) and the adversary’s action ua, ya. Therefore, we shall
denote it as

y = f(w, v, x(0), ua, ya).

Notice that we omitted the control input u since u can be
calculated from y.

Now if there exists a scalar z∗ ∈ C, and two vectors u∗ ∈
Cp and y∗ ∈ Cm, such that

Ga(z∗)u∗ + Γyy∗ = 0,

then the adversary can choose

ua(k) = zk∗u∗, y
a(k) = zk∗y∗. (17)

Let us define x∗ , (z∗I − A)−1BΓuu∗. One can verify
that

f(w, v, x(0) + x∗, u
a, ya) = f(w, v, x(0), 0, 0).

Therefore, the attack is stealthy since given the sensory data
y, the controller cannot distinguish the following two cases
from the sensory data:

1) the initial condition is x(0) + x∗ and the adversary
injected ua and ya defined in (17);

2) the initial condition is x(0) and no adversary exists.

Remark 5. It is worth noticing that the adversary only need
to compute z∗, u∗ and y∗ to launch the attack, which only
requires the knowledge of G(z), Γu and Γy .

IV. LOW-RANK CONTROLLER DESIGN AGAINST KPA

By Theorem 2, one way to prevent the adversary from
identifying G(z) is to enforce the factorization (11) on the
controller transfer function K(z). Let us define the following
“virtual” control input:

ũ(k) , K̃(z)y(k). (18)

Hence, u(k) = K(z)y(k) = Fũ(k). The factorization on
K(z) implies the CPS diagram illustrated in Fig 2.

Since we are restricting ourselves to use a low-rank
controller, the performance of the system may not be optimal.
In this section, we consider the problem of optimizing the
following infinite horizon LQG performance:

J = lim sup
T→∞

1

T
min
u(k)

E

[
T−1∑
k=0

x(k)TWx(k) + u(k)TUu(k)

]
,

(19)

w(k) H(z)
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v(k)

F K̃(z)

y(k)

ũ(k)
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Fig. 2. The diagram of the CPS with a low-rank controller design, where
K(z) is factorized into F K̃(z).

under the constraint that F ∈ Rp×q where q is given. The
W, U matrices are assumed to be positive semidefinite. We
shall first consider how to design K̃(z) when F is given. We
then provide a heuristic algorithm to compute the optimal F
based on convex relaxation.

A. Optimal K̃(z)

Since u(k) = Fũ(k), we can rewrite the system equation
as

x(k + 1) = Ax(k) + B̃ũ(k) + w(k),

where B̃ , BF . Furthermore, the objective function of LQG
can be rewritten as

J = lim sup
T→∞

1

T
min
ũ(k)

E

[
T−1∑
k=0

x(k)TWx(k) + ũ(k)T Ũ ũ(k)

]
,

where Ũ , FTUF ∈ Rq×q . Therefore, the optimal control
is given by a Kalman filter and a LQR controller [21]:

Kalman Filter: The state estimation of the Kalman filter
(with a fixed gain) is given by:

x̂(k) = x̂(k|k − 1) +K(y(k)− Cx̂(k|k − 1)),

x̂(k + 1|k) = Ax̂(k) +Bu(k).

where

K = PCT (CPCT +R)−1,

and P is the fixed point of the following Riccati equation:

P = APAT +Q−APCT (CPCT +R)−1CPAT .

LQR controller: The optimal control can then be derived
as a linear function of the state estimate:

ũ(k) = L̃x̂(k), (20)

where

L̃ = −(B̃T S̃B̃ + Ũ)−1B̃T S̃A,

and S̃ is the solution of the following Riccati equation

S̃ = AT S̃A+W −AT S̃B̃(B̃T S̃B̃ + Ũ)−1B̃T S̃A. (21)



The corresponding K̃(z) is given by

K̃(z) = zL̃
[
zI − (I −KC)(A+BL̃)

]−1
K.

The corresponding LQG cost is given by

J∗ = tr(S̃Q) + tr[(W +AT S̃A− S̃)(P −KCP )]

= tr(S̃Y ) + tr[W (P −KCP )], (22)

where

Y , Q+A(P −KCP )AT − (P −KCP )

= PCT (CPCT +R)−1CP � 0.
(23)

B. Optimal F

Now we consider how to design the optimal F matrix
in order to minimize the LQG cost. Since the second term
on the RHS of (22) is independent of F , the optimization
problem can be formulated as the following optimization
problem:

minimize
F∈Rp×q

tr(S̃Y ). (24)

By applying matrix inversion lemma on the RHS of (21),
we have

S̃ = AT
(
S̃−1 + B̃Ũ−1B̃T

)−1
A+W, (25)

where

B̃Ũ−1B̃T = BF
(
FTUF

)−1
FTB

= BU−1/2
[
U1/2F

(
FTUF

)−1
FTU1/2

]
U−1/2BT .

Let us denote

X , U1/2F
(
FTUF

)−1
FTU1/2, B̄ , BU−1/2. (26)

It is easy to verify that X2 = X and X = XT . Hence X
is a symmetric projection matrix. Furthermore, rank(X) =
rank(F ) = q.

On the other hand, assume that X is a symmetric projec-
tion matrix of rank q. Let v1, . . . , vq to be the orthonormal
basis of the column space of X . Then the following F will
satisfy (26):

F = U−1/2
[
v1 . . . vq

]
. (27)

Therefore, instead of optimizing over F , the optimization
problem (24) can be manipulated into

minimize
X∈Sp

tr(S̃Y ) (28)

subject to S̃ = gX(S̃),

X = XT , X2 = X, rank(X) = q,

where

gX(S̃) , AT
(
S̃−1 + B̄XB̄T

)−1
A+W. (29)

We will first manipulate the constraint S̃ = gX(S̃) into
Linear Matrix Inequalities (LMIs). To this end, we need the
following intermediate result [22]:

Proposition 2. For a fixed X , gX(S̃) is monotonically non-
decreasing in S̃.

Consider the following optimization problem:

minimize
X∈Sp, S̃

tr(S̃Y ) (30)

subject to S̃ ≥ gX(S̃),

X = XT , X2 = X, rank(X) = q,

where we relax the S̃ = gX(S̃) constraint in (28) to
S̃ ≥ gX(S̃). The next theorem proves that (28) and (30)
are equivalent:

Lemma 3. There exists an optimal solution (X, S̃) for the
optimization problem (30) (not necessarily unique), such that
the following equality holds

S̃ = gX(S̃).

Proof. See Appendix.

We will now rewrite the constraint S̃ ≥ gX(S̃) as an LMI.
To this end, let us take the inverse on both sides of S̃ ≥
gX(S̃) and apply matrix inversion lemma on the RHS,

W−1 − S̃−1 −W−1ATZ−1AW−1 � 0, (31)

where
Z = S̃−1 +AW−1AT + B̄XB̄T .

Let us define T = S̃−1, using Schur complement, we know
that (31) is equivalent to:[

T +AW−1AT + B̄XB̄T AW−1

W−1AT W−1 − T

]
� 0. (32)

Therefore, optimization problem (30) is equivalent to:

minimize
X, S̃, T

tr(S̃Y ) (33)

subject to
[
S̃ I
I T

]
� 0,[

T +AW−1AT + B̄XB̄T AW−1

W−1AT W−1 − T

]
� 0,

X = XT , X2 = X, rank(X) = q.

The first constraint is equivalent to S̃ � T−1 � 0. Since
we are minimizing tr(S̃Y ) and Y � 0, the optimal solution
must have S̃ = T−1.

We will now relax the constraint on X into a convex
constraint, which is given by the following lemma:

Lemma 4. The closed convex hull of all rank q projection
matrix X ∈ Sp is given by

X = {X ∈ Sp : 0 � X � I, tr(X) = q}.

Proof. If X is a symmetric projection matrix of rank q, then
X has q eigenvalues at 1 and p − q eigenvalues at 0. It is
easy to verify that X is convex and contains X . One can
further verify that the projection matrices are the extreme
points of X and hence the lemma can be prove by Krein-
Milman theorem. The detailed proof is omitted due to space
limit.



Hence, by Lemma 4, the optimization problem can be re-
laxed to the following semidefinite programing optimization
and solved efficiently:

minimize
X, S̃, T

tr(S̃Y ) (34)

subject to
[
S̃ I
I T

]
� 0,[

T +AW−1AT + B̄XB̄T AW−1

W−1AT W−1 − T

]
� 0,

X = XT , 0 � X � I, tr(X) = q.

Remark 6. In summary, the optimization problem (24), (28),
(30) and (33) are all equivalent. On the other hand, the
constraint on X in (33) is relaxed into a convex constraint
in (34). Therefore, the optimal value of (34) is no greater
than the optimal value of (24), (28), (30) and (33).

Denote the optimal solution of (34) as (X∗, S̃∗, T∗). Since
we relaxed the constraint on X , X∗ is not necessarily a
projection matrix. To derive a projection matrix from X∗,
one can do an eigendecomposition and rewritten X∗ as

X∗ = U∗diag(λ1, . . . , λp)U
T
∗ ,

where U∗ is a orthonormal matrix and λ1 ≥ · · · ≥ λp. We
can define a projection matrix X0 from X∗ as

X0 = U∗diag(1, . . . , 1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
p−q

)UT∗ .

Denote the corresponding fixed point of S̃ = gX0(S̃) as S̃0.
Let us further denote the optimal value of (24) as α. Clearly,
X0 lies in the feasible set of the optimization problem (28).
Therefore, tr(S̃0Y ) ≥ α. On the other hand, since (34) is
a relaxed problem, we have α ≥ tr(S̃∗Y ). Therefore, we
know the optimality gap of our heuristic solution is bounded
by

tr(S̃0Y )− α ≤ tr(S̃0Y )− tr(S̃∗Y ).

Furthermore, if X∗ is indeed a projection matrix, then the
optimality gap is 0 and we solve (24) exactly.

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illus-
trate our low-rank controller design. We assume that n =
15, m = p = 10. The Q, R, W, U matrices are all chosen
to be identity matrix. The matrix A, B, C are randomly
generated, where each entry is independently drawn from
a uniform distribution on [0, 1].

We consider the LQG performance of a low-rank con-
troller versus the performance of an optimal controller with
no rank constraint. We define the relative performance loss
as

J of the low rank controller
J of the optimal controller

− 1.

We will choose q from 5 to 9 and for each q, we
will perform 1000 random experiments. Fig 3 is the box
and whisker diagram of the relative LQG performance loss
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Fig. 3. Relative LQG performance Loss versus q. 1000 random experi-
ments are conducted for each q. The bottom and top of the box represent the
first and third quartiles, and the band inside the box represents the median
of the data. The ends of the whiskers represent the minimum and maximum
of the data.

generated by the random experiments. One can see that even
if q = 5, meaning that we only use half degrees of freedom
to design the controller, the LQG loss is still small, with
median loss at 6%.

VI. CONCLUSION

We consider KPA in CPS and provide a necessary con-
dition and a sufficient condition under which the transfer
function of the physical system can be uniquely identified by
an adversary who passively observes the control input and
sensory data. Our results demonstrate the vulnerability of the
classical MIMO feedback control systems to KPA. A low-
rank controller design framework is then proposed to prevent
the adversary from identifying the exact physical system
model. The design trade-off between system performance
and security has been investigated.
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APPENDIX

Proof of Lemma 1. From the definition, Φy,u(w) is real ra-
tional and positive semi-definite for |z| = 1. The closed-
loop transfer function C(z) is stable and minimum phase.
Therefore, C(z) is analytic in |z| ≥ 1. Since G,H are strictly
proper, we have G(∞) = 0, H(∞) = 0. On the other hand,
since K is proper and rational, K(∞) exists. Hence

lim
z→∞

C(z) =

[
0 I
0 K(∞)

]
.

Assume that both C, D =

[
Q 0
0 R

]
and Ĉ, D̂ =

[
Q̂ 0

0 R̂

]
give the same Φy,u satisfying

1) D and D̂ are block diagonal and positive definite
matrices;

2) both C and Ĉ are stable and minimum phase,
then there exists a paraunitary matrix V(z) such that [15]

Ĉ(z) = C(z)V(z), (35)

D̂ = V(z)DV∗(z). (36)

From (35), since both C(z) and Ĉ(z) are stable and
minimum phase, V(z) is stable and minimum phase, which
implies that V(z) is a constant matrix independent of z [18],
[20]. Therefore, we denote it simply as V . Take z →∞ on
both sides of (35) yields[

0 I

0 K̂(∞)

]
=

[
0 I
0 K(∞)

]
lim
z→∞

V, (37)

which leads to

V21 = 0, V22 = I. (38)

Since V V ∗ = I , we have V12 = 0 and V11V
∗
11 = I . As a

result, (35) and (36) imply that

Ĉ = C
[
V11 0
0 I

]
⇔


Ĉ11 = C11V11
Ĉ12 = C12
Ĉ21 = C21V11
Ĉ22 = C22

and

D̂ =

[
V ∗11 0
0 I

]
D

[
V11 0
0 I

]
⇔
{
Q̂ = V ∗11QV11
R̂ = R

.

(39)

Proof to Lemma 3. Assume that (X, S̃) is the optimal so-
lution for (30). Since S̃ ≥ gX(S̃) and gX is monotonically
non-decreasing in S̃, we know that

S̃ ≥ gX(S̃) ≥ g(2)X (S̃) ≥ · · · ≥ 0,

where

g
(1)
X (S̃) , gX(S̃), g

(n+1)
X (S̃) , gX

(
g
(n)
X (S̃)

)
.

Since g
(n)
X (S̃) is monotonically decreasing and positive

semidefinite, it will converge to a matrix S̃∗ = gX(S̃∗) ≤ S̃.
Therefore, (X, S̃∗) is also the optimal solution of (30),
which finishes the proof.


