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Abstract: We consider the estimation of a vector state based on m measurements that can be potentially manipulated by an
adversary. The attacker is assumed to have limited resources and can only manipulate up to l of the m measurements. However,
it can the compromise measurements arbitrarily. The problem is formulated as a minimax optimization, where one seeks to
construct an optimal estimator that minimizes the “worst-case” error against all possible manipulations by the attacker and all
possible sensor noises. We show that if the system is not observable after removing 2l sensors, then the worst-case error is
infinite, regardless of the estimation strategy. If the system remains observable after removing arbitrary set of 2l sensor, we prove
that the optimal state estimation can be computed by solving a semidefinite programming problem. A numerical example is
provided to illustrate the effectiveness of the proposed state estimator.
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1 Introduction

The increasing use of networked embedded sensors to
monitor and control critical infrastructures provides poten-
tial malicious agents with the opportunity to disrupt their
operations by corrupting sensor measurements. Supervisory
Control And Data Acquisition (SCADA) systems, for exam-
ple, run a wide range of safety critical plants and processes,
including manufacturing, water and gas treatment and dis-
tribution, facility control, and power grids. A wide variety
of motivations exists for launching an attack on the such
systems, ranging from financial reasons, e.g., reducing the
electricity bill, all the way to terrorism, e.g., threatening the
life of possibly an entire population by controlling electric-
ity and other life-critical resources. A successful attack to
such kind of systems may significantly hamper the economy,
the environment, and may even lead to the loss of human
life. The first-ever SCADA system malware (called Stuxnet)
was found in July 2010 and rose significant concern about
SCADA system security [1, 2]. The research community
has acknowledged the importance of addressing the chal-
lenge of designing secure detection, estimation and control
systems [3].

We consider a secure estimation problem inspired by se-
curity concerns that arise from the possible manipulation of
sensor data. We focus our attention on the estimation of a
vector state x ∈ Rn from measurements collected by m sen-
sors, with the caveat that the measurements are disturbed by
an L2 bounded noise and some of them can be further ma-
nipulated by a malicious third party. Limitations in the re-
sources available to the attacker enable it to only manipulate
l of the m sensors. However, the attacker has total control
over the corrupted sensors, as it can change the measure-
ments of the compromised sensors arbitrarily. To minimize
the estimator’s performance degradation in the presence of
such attacks, we construct minimax estimator that minimize
the “worst-case” expected cost against all possible noise and
attacker’s manipulate.

We show that if the system becomes unobservable after re-
moving 2l sensor measurements, then even the optimal state
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estimator will have a “worst-case” unbounded error. For the
case where the system remains observable after removing
an arbitrary set of 2l sensors, we provide the explicit form
of the optimal estimation, which is given by the Chebyshev
center of a union of ellipsoids, which can be computed via
semidefinite programming.

Related Work
Robust estimators such as M-estimator, L-estimator, R-

estimator and etc. have also been extensively studied in the
literature [4–6]. However, such approaches usually assume
that the outliers of the data are generated independently by
some other probability distribution different from the model
assumptions. Furthermore, the robustness is usually mea-
sured by breakdown points [7, 8] or influence functions [9].
However, the independent assumptions do not hold in secu-
rity settings. As the attacker can take control over multiple
sensors, the compromised measurements from these sensors
can be jointly selected by the adversary to maximize the esti-
mation error. As a result, in this paper, we design our estima-
tor to minimize the “worst-case”L2 error against all possible
attacks. Therefore, the concepts of robustness and security
are different from each other. In other words, a robust esti-
mator may not necessarily be secure and thus the techniques
developed for robust estimation need to be re-examined be-
fore they can be applied in the context of security.

Furthermore, bad data detection and identification tech-
niques, which are based on truncating the “atypical” data,
have been widely used in large scale systems such as the
power grid [10]. While such approaches are very successful
in detecting and removing random failures, they are not ef-
fective against integrity attacks. Liu et al. [11] illustrate how
an adversary can inject a stealthy input into the measure-
ments to change the state estimate, without being detected
by the bad data detector. Sandberg et al. [12] consider how
to find a sparse stealthy input, which enables the adversary
to launch an attack with a minimum number of compromised
sensors. Xie et al. [13] further illustrate that the stealthy in-
tegrity attacks on state estimation can lead to a financial gain
in the electricity market for the adversary.

For dynamical systems, a widely used approach is to con-
struct “failure-sensitive” filters [14]. This detection scheme



has been investigated recently in the context of cyber-
physical security [15–18]. In these scenarios, the attacker
can either arbitrarily perturb the system along certain direc-
tions without being detected by any filter or cannot induce
any perturbation, without incurring detection. However, in
the majority of these contributions, the system model is as-
sumed to be noiseless, which greatly favors the failure de-
tector, since the evolution of the system is deterministic and
any deviation from the predetermined trajectory can be de-
tected. A more realistic system model with bounded noise
is considered by Pajic et al. [19]. They propose an estimator
by solving an L0 norm minimization problem and provide
performance bound on the estimation error. In [20, 21], the
authors also consider a noisy system, providing an algebraic
condition under which an attacker can successfully destabi-
lize the system and characterizing the performance of state
estimators in this scenario.

This paper generalizes our previous works on secure esti-
mation [22, 23], which consider designing the optimal esti-
mator for a scalar state and minimizes the “worst-case” mean
squared error. In this paper, we derive the optimal estima-
tor for a vector state, with the caveat that the noise is L2

bounded.
The rest of paper is organized as follows: In Section 2 we

provide some preliminary results on the radius and diame-
ter of compact set in Euclidean space. In Section 3 we for-
mulate the problem of secure estimation with l manipulated
measurements from m total measurements. In Section 4, we
characterize the performance of the optimal estimator and
provide an observability condition under which the estima-
tor can have an unbounded error. In Section 5, we provide an
algorithm to compute the optimal state estimate via semidef-
inite programming. In Section 6 we provide a numerical ex-
ample to illustrate the proposed algorithm. Finally, Section 7
concludes the paper.

Notation
Let x ∈ Rn be a vector, then ‖x‖ is the 2-norm of x. ‖x‖0

is the zero “norm” of x, i.e., the number of non-zero entries
of x.

All comparisons between matrices are in the positive
semidefinite sense.

2 Preliminary

A ball B(x, r) ⊂ Rn is defined as

B(x, r) , {x′ ∈ Rn : ‖x′ − x‖2 ≤ r}.

Consider a set S ⊆ Rn. A ball B(x, r) covers S if and only
if S ⊆ B(x, r). For any point x ∈ Rn, define

ρ(x, S) , inf{r ∈ R+ : S ⊆ B(x, r)}

We will assume that the infimum over an empty set is ∞.
Hence, if S is unbounded, then ρ(x, S) =∞ for any x.

For a bounded set S, define the radius r(S) ∈ R+ and
Chebyshev center c(S) ∈ Rn of S to be

r(S) , inf
x∈Rn

ρ(x, S),

c(S) , arg min
x∈Rn

ρ(x, S).

In an essence, B(c(S), r(S)) is the smallest radius ball that
covers S. Notice that c(S) may not necessarily belong to S.
For an unbounded S, we define r(S) =∞.

We further define the diameter d(S) of the set S as

d(S) , sup
x∈S

ρ(x, S).

Notice that in general d(S) 6= 2r(S). For example, for
a equilateral triangle with side length 1, we have d(S) =
1, while r(S) = 1/

√
3. In general, the following relation

between r(S) and d(S) holds:

Theorem 1. Let S ⊂ Rn be a non-empty and bounded set,
then the following inequalities hold on r(S) and d(S)

d(S)

2
≤ r(S) ≤

√
n

2n+ 2
d(S) ≤ 1√

2
d(S).

Proof. The first inequality is due to the fact that S ⊆
B(c(S), r(S)), which implies that

d(S) ≤ d[B(c(S), r(S))] = 2r(S).

The second inequality is from Jung’s theorem [24]. The third
inequality is trivial.

3 Problem Formulation

The goal is to estimate the state x ∈ Rn from a vector
y , [y1, . . . , ym]T ∈ Rm consisting of m sensor measure-
ments yi ∈ R, where the index i ∈ S , {1, 2, ...,m}. The
measurements could potentially be compromised by an ad-
versary. Therefore, we assume that x and y satisfies the fol-
lowing equation:

y = Hx+Gw + a, (1)

where ‖w‖ ≤ δ is the sensor noise, which is assumed to be
bounded, and G ∈ Rm×m is assumed to be full rank. The
vector a is the bias injected by the attacker. The non-zero
entries of a indicates the set of compromised sensors. In this
paper, we assume that the attacker can only manipulate up to
l sensors. As a result, ‖a‖0 ≤ l.
Remark 1. The parameter l can also be interpreted as a de-
sign parameter for the system operator. In general, increas-
ing l will increase the resilience of the estimator under at-
tack. However, a large l could result in performance degra-
dation during normal operation when no sensor is compro-
mised. Therefore, there exists a trade-off between resilience
and efficiency (under normal operation), which can be tuned
by choosing a suitable parameter l.

Define

H ,

h1...
hm

 , w ,

w1

...
wm

 , a ,

a1...
am

 ,
and define the set Y as the set of all possible “manipulated”
measurements, i.e.,

Y , {y ∈ Rm : ∃x, w, a,
such that ‖w‖2 ≤ δ, ‖a‖0 ≤ l and y = Hx+Gw + a}.



For any y ∈ Y, we can define the set X(y) as the set of
feasible x that can generate y, i.e.,

X(y) , {x ∈ Rn : ∃w, a,
such that ‖w‖ ≤ δ, ‖a‖0 ≤ l and y = Hx+Gw + a}.

An estimator is a function f : Y → Rn, where x̂ = f(y).
Given y, the magnitude of the worst case estimation error is
defined as

e(y) , sup
x∈X(y)

‖f(y)− x‖.

From the definition of the Chebyshev center, we know
that the optimal estimator with smallest worst case error e
is given by

f∗(y) , c(X(y)),

with worst case error

e(y) = r(X(y)).

Therefore, the worst case error magnitude for all possible
y is given by

e∗ , sup
y∈Y

r(X(y)).

In the following sections, we provides an upper and lower
bound for e∗. We further propose an algorithm to compute
c(X(y)) via convex optimization.

4 Performance Bounds for the Optimal Estimator

This section is devoted to analyzing the performance of
the optimal estimator. To this end, for any index set I =
{i1, . . . , ij}, define the complement set Ic = S\I and define
subspace VI , span(ei1 , . . . , eij ) ⊆ Rm, where ei ∈ Rm is
the ith canonical basis vector. Define the following set:

XI(y) , {x ∈ Rn : ∃w, a ∈ VIc ,
such that ‖w‖2 ≤ δ and y = Hx+Gw + a}.

Hence, XI(y) represents all possible states that can gener-
ate measurement y when the sensors in I are good and the
sensors in Ic are compromised. By enumerating all possible
Is, it is easy to see that X(y) can be written as

X(y) =
⋃

|I|=m−l

XI(y).

For any I = {i1, . . . , ij}, we can define

HI ,

hi1...
hij

 , GI ,

gi1...
gij

 , yI ,

yi1...
yij

 ,
where gi is the ith row vector of G.

FI , GIG
T
I .

Since G is full rank, GI is full row rank, which implies that
FI is full rank. Thus, if HI is full column rank, we can
define

KI ,
(
HT
I F
−1
I HI

)−1
HT
I F
−1
I ,

PI ,
(
HT
I F
−1
I HI

)−1
,

UI , (I −HIKI)TF−1I (I −HIKI).

The following theorem provides bounds on e∗:

Theorem 2. If there exists an index set K ⊂ S with cardi-
nality m− 2l, such that HK is not of full column rank, then
e∗ = ∞. If for all |K| = m − 2l, HK is full column rank,
then for all possible y ∈ Y, we have

sup
y∈Y

d(X(y)) = 2δ max
|K|=m−2l

√
σ(PK). (2)

Therefore, e∗ satisfies

max
|K|=m−2l

δ
√
σ(PK) ≤ e∗ ≤ max

|K|=m−2l
δ
√

2σ(PK), (3)

where σ(P ) is the spectral radius of P .

Before proving Theorem 2, we need the following lemma:

Lemma 1. If K1 ⊆ K2 ⊆ S and HK1
is full column rank,

then the following statement holds:
1) HK2

is also full column rank.
2) PK1

≥ PK2
.

Proof. Without loss of generality, let us assume that

HK2
=

[
HK1

HK2

]
. (4)

Therefore,

n ≥ rank(HK2
) ≥ rank(HK1

) = n.

Hence, HK2 is full column rank, which implies that PK2 is
well-defined.

To prove PK1
≥ PK2

, we only need to prove that

HT
K1
F−1K1

HK1 ≤ HT
K2
F−1K2

HK2 . (5)

From definition of FI , we can write FK2
as

FK2
=

[
F11 F12

F ′12 F22,

]
where F11 = FK1

. Using Schur complements, we have

F−1K2
=

[
F−111 0

0 0

]
+

[
F−111 F12

I

] (
F22 − F ′12F−111 F12

)−1 [
F ′12F

−1
11 I

]
Combining with (4), we can prove (5).

We are now ready to prove Theorem 2:

Proof of Theorem 2. We first prove (2). Suppose that for all
K ⊂ S with cardinality m− 2l, HK is full column rank. Let
us consider a pair of set I, J with cardinality m− l. Define
K as

K = I
⋂
J = S\

(
Ic
⋃
J c
)

Clearly, |K| ≥ m − 2l and it includes a index set of size
m − 2l. Hence, by Lemma 1, HK is also full column rank.
Now for any point x1 ∈ XI(y) and x2 ∈ XJ (y), we have:

Hx1 +Gw1 + a1 = Hx2 +Gw2 + a2 = y, (6)

where a1 ∈ VIc and a2 ∈ VJ c . Since both a1 and a2 have
zero entries on the ith entry, where i ∈ K, (6) implies that

HKx1 +GKw1) = HKx2 +GKw2). (7)



which implies that

x1 − x2 = KKGK(w2 − w1). (8)

By the fact that ‖w2 − w1‖2 ≤ 2δ, we have

‖x1 − x2‖ ≤ 2‖KKGK‖δ = 2δ
√
σ(PK),

where ‖KKGK‖ is the largest singular value of KKGK.
Therefore, by Lemma 1, we have

sup
y∈Y

d(X(y)) ≤ 2δ max
|K|≥m−2l

√
σ(PK)

= 2δ max
|K|=m−2l

√
σ(PK).

Now we need to prove that the equality of (2) holds. Suppose
that we find x1, x2 and ‖w1‖, ‖w2‖ ≤ δ that satisfies (7) and
‖x1 − x2‖ = 2

√
σ(PK). We know that

HKx1 +GKw1 = HKx2 +GKw2. (9)

Therefore, let us create a y, such that

yK = HKx1 +GKw1,

yI\K = HI\Kx1 +GI\Kw1,

yJ\K = HJ\Kx2 +GJ\Kw2,

yS\(I∪J ) = 0.

Thus,

yK −HKx1 = GKw1,

yI\K −HI\Kx1 = GI\Kw1,

which implies that x1 ∈ XI(y). On the other hand,

yK −HKx2 = HK(x1 − x2) +GKw1 = GKw2,

yJ\K −HJ\Kx2 = GJ\Kw2,

which implies that x2 ∈ XJ (y). Therefore, (2) holds. (3)
can be proved by applying Theorem 1.

Now suppose there exists an |K| = m− 2l, such that HK
is not full column rank. We can find index set I,J , such
that |I| = |J | = m − l and I

⋂
J = K. Furthermore, we

know that there exists x1 6= 0, such that

HKx1 = 0.

As a result, if we choose x2 = 0, w1 = w2 = 0, then (9)
holds for x1, x2, w1, w2. Now by the similar argument, we
can construct a y, such that x1 ∈ XI(y) and x2 = 0 ∈
XJ (y). Moreover, by linearity, we know that

αx1 ∈ XI(αy), 0 = αx2 ∈ XJ (αy).

Hence, by Theorem 1,

e∗ ≥ sup
y∈Y

d(X(y))

2
≥ sup
α∈R

‖αx1‖
2

=∞.

5 Estimator Design

In this section, we first characterize the shape of XI(y):

Theorem 3. Define the function VI(x) : Rn → R as the
solution of the following optimization problem:

minimize
w∈Rm

‖w‖2

subject to GIw = yI −HIx. (10)

Then VI(x) is given by

VI(x) = (x− x̂I(y))TP−1I (x− x̂I(y)) + εI(y), (11)

where
x̂I(y) = KIyI , (12)

and
εI(y) = yTI UIyI . (13)

Proof. Consider the constraint of the optimization prob-
lem (10)

yI −HIx = GIw. (14)

As G is full row rank, GI is also full row rank. Consider the
singular value decomposition of GI , we get

GI = Q1

[
Λ 0

]
Q2,

where Q1, Q2 are orthogonal matrices with proper dimen-
sions and Λ is an invertible and diagonal matrix. Hence,
(14) implies that

Λ−1QT1 yI − Λ−1QT1HIx =
[
I 0

]
v. (15)

where v = Q2w and ‖v‖ = ‖w‖. By projecting Λ−1QT1 yI
into the subspace span(Λ−1QT1HI), we have[
Λ−1QT1 yI − Λ−1QT1HI x̂I(y)

]
+ Λ−1QT1HI [x− x̂I(y)]

=
[
I 0

]
v. (16)

The first term on the LHS of (16) is perpendicular to the
second term. Thus, (16) is equivalent to

εI(y) + (x− x̂I(y))TP−1I (x− x̂I(y))

=
∥∥[I 0

]
v
∥∥2 ≤ ‖v‖2 = ‖w‖2.

Clearly, the equality holds when v =[
v1, . . . , v|I|, 0, . . . , 0

]
. Hence

VI(x) = εI(y) + (x− x̂I(y))TP−1I (x− x̂I(y)).

By Theorem 3, we immediately have the following corol-
lary:

Corollary 1. If εI(y) > δ2, then XI(y) is an empty set.
Otherwise, XI(y) is an ellipsoid given by

XI(y) = {x : (x−x̂I(y))TP−1I (x−x̂I(y)) ≤ δ2−εI(y)}.
(17)



Proof. By definition, x ∈ XI(y) is equivalent to the exis-
tence of w, such that ‖w‖ ≤ δ and

yI = HIx+GIw.

Hence, the corollary holds by Theorem 3.

Remark 2. One can view εI(y) as the deviation of the mea-
surement from the attack model. If εI(y) ≥ δ2, i.e., the
deviation cannot be explained by the noise, then XI(y) is
empty, which implies that the good sensor set is not I.

Let us define set as

I , {I ⊂ S : |I| = m− l, δ2 ≥ εI(y)}. (18)

Since X(y) =
⋃
|I|=l XI(y) =

⋃
I∈I XI(y), we know that

X(y) is a union of ellipsoids. To check if a ball covers a
union of ellipsoids, we have the following theorem [25]:

Theorem 4. A ball B(x, r) covers X(y) if and only if for
every index set |I| = m− l, such that

δ2 − εI(y) ≥ 0,

there exists τI ≥ 0, such that

τIΩI ≥

 I −x 0
−xT −r2 xT

0 x −I

 , (19)

where ΩI is defined as,

ΩI = P−1I −P−1I x̂I(y) 0
−x̂I(y)TP−1I x̂I(y)TP−1I x̂I(y) + εI(y)− δ2 0

0 0 0

 .
Proof. This theorem can be proved by Lemma 2.8 in [25].

Therefore, we can derive the optimal state estimate as the
solution of the following semidefinite programming prob-
lem:

minimize
x̂,ϕ,τI

ϕ (20)

subject to ϕ ≥ 0,

τI ≥ 0, ∀I ∈ I,

τIΩI ≥

 I −x̂ 0
−x̂T −ϕ x̂T

0 x̂ −I

 ,∀I ∈ I.

where the radius of the Chebyshev ball is r =
√
ϕ.

In conclusion, the optimal state estimation can be com-
puted via the following algorithm:

1) Enumerate all possible |I| = m−l, compute x̂I(y) and
εI(y) via (12) and (13).

2) Check whether εI(y) is no greater than δ2. Compute
the index set I via (18).

3) Solve the optimization problem (10).

6 Numerical Example

In this section, we provide a numerical example to illus-
trate our estimator design. We assume that n = 2, m = 4
and one sensor is compromised. The noise is assume to sat-
isfy ‖w‖ ≤ δ = 1. We further assume that

H =


1 0
0 1
1 1
1 −1

 , G = I.

It is easy to check that for any |K| = m− 2l = 2, HK is full
column rank.

We first consider the worst case performance of our esti-
mator. One can verify that

max
|K|=2

σ(PK) = 2.618

where the corresponding K = {1, 3}. Using the proce-
dure described in the proof of Theorem 2, we choose I =
{1, 2, 3}, J = {1, 3, 4}. We can then construct the follow-
ing variables:

x1 =

[
−1.701
2.753

]
, w1 =


0.8507

0
−0.5257

0

 .
and

x2 = 0, w2 =


−0.8507

0
0.5257

0

 .
The corresponding y is given by

y =


−0.851
2.753
0.5257

0

 .
The optimal state estimate x̂ and worst-case error e(y) is
given by

x̂ =

[
−0.851
1.376

]
, e(y) = 1.618.

On the other hand, if the system operator is unaware of the
existence of the adversary, it is easy to prove that the opti-
mal estimator designed for the non-adversarial environment
is given by

x̂ =
(
HT (GGT )−1H

)−1
HT (GGT )−1y. (21)

For our case, the state estimate given by (21) is

x̂ =

[
−0.108
1.093

]
,

for which the worst case error e(y) = 2.306.
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X{1,3,4}(y)

X{1,2,3}(y)

Fig. 1: The performance of the optimal state estimator.
The green ellipse corresponds to X{1,3,4}(y) and the red el-
lipse corresponds to X{1,2,3}(y). The set X{2,3,4}(y) and
X{1,2,4}(y) is empty. The black “+” is the optimal state es-
timate while the black dashed line is the Chebyshev ball for
X(y). The red “×” corresponds to the output of the opti-
mal state estimator designed for benign sensors and the red
dashed line is the minimum covering ball of X(y) centered
at “×”.

7 Conclusion and Future Work

We consider the estimation of a vector state x based on
m measurements, where l of them are malicious and can be
changed arbitrarily by an adversary. We prove that if the
system is not observable after removing 2l sensor measure-
ments, then the attacker can make the worst case estimation
error to be infinite. On the other hand, we provides upper
and lower bound for the worst case estimation error when
the system remains observable after removing any set of 2l
sensors. We then derive the optimal state estimation as the
solution of a semidefinite programming problem.

In the future, we want to find a near optimal state estimator
with lower computation complexity. Furthermore, we would
like to consider stochastic noise models.
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