Multi-dimensional state estimation in adversarial environment

Yilin Mo

School of Electrical and Electronics Engineering Nanayang Technological University
2015-07-28

Joint Work with Prof. Richard M. Murray

Motivation

- Sensor networks are becoming ubiquitous
- Sensors are usually cheap, distributed in space and physically exposed, which makes it difficult to ensure security for every single sensor
- Our goal: to design the optimal state estimator in the presence of compromised sensory data

System Model

- We assume that $x \in \mathbb{R}^{n}$ is the state
- m sensors are deployed to monitor the system. Denote $y_{i} \in \mathbb{R}$ as the measurement generated by sensor i.
- Denote $y=\left[\begin{array}{lll}y_{1} & \cdots & y_{m}\end{array}\right]^{T}$ as the collection of all sensory data.
- We assume the following sensor model

$$
y=H x+G w+a,
$$

where $\|w\| \leq \delta$ represents measurement noise and $\|a\|_{0} \leq l$ is the bias injected by the adversary.

Estimation Error

- An estimator f is a mapping from sensory data y to a state estimate $\hat{x}=f(y)$.
- The estimation error can be defined as $e \triangleq x-f(y)$.
- Clearly the estimation error is a function of x, w, a and our choice of estimator f.
- In this presentation, we will consider the worst-case error defined as

$$
e^{*}(f)=\sup _{x, w, a}\|e\|
$$

Some Preliminary Results

- Assume that $S \subset \mathbb{R}^{n}$ is bounded.
- We say that a ball $B(x, r)$ covers S if $S \subset B(x, r)$.
- For any point $x \in \mathbb{R}^{n}$, denote $\rho(x, S)$ as the radius of the minimum ball that centers at x and covers S.
- Define the Chebyshev center and the radius of S as

$$
r(S) \triangleq \inf _{x \in \mathbb{R}^{n}} \rho(x, S), c(S) \triangleq \underset{x \in \mathbb{R}^{n}}{\arg \min } \rho(x, S)
$$

- We further define the diameter of S as $d(S) \triangleq \sup _{x, x^{\prime} \in S}\left\|x-x^{\prime}\right\|$.

Example

- A circle with radius 1 .
- The radius $r(S)$ is 1 and diameter $d(S)$ is 2 .
- Notice that the Chebyshev center may not in the set S.

Example

- A equilateral triangle with side length 1
- The radius $r(S)$ is $1 / \sqrt{3}$ and diameter $d(S)$ is 1 .
- For general set S in $R^{n}, r(S) \neq d(S) / 2$.
- However, we can prove the following inequalities (Jung's Theorem):

$$
\frac{d(S)}{2} \leq r(S) \leq \sqrt{\frac{n}{2 n+2}} d(S) \leq \frac{1}{\sqrt{2}} d(S)
$$

Estimator Design

- Let us denote \mathbb{Y} as the set of all feasible measurements y, i.e., there exist $x,\|w\| \leq \delta$ and $\|a\|_{0} \leq I$, such that $y=H x+G w+a$.
- For any $y \in \mathbb{Y}$, let us denote $\mathbb{X}(y)$ as the set of all feasible x that can generate y, i.e., there exist $\|w\| \leq \delta$ and $\|a\|_{0} \leq l$, such that $H x=y-G w-a$.

Figure: $\mathbb{X}(y)$

Estimator Design

- For a given $y \in \mathbb{Y}$, the worst-case error is $\sup _{x \in \mathbb{X}(y)}\|x-f(y)\|$.
- If $\mathbb{X}(y)$ is bounded, then the optimal estimator should be $f(y)=c(\mathbb{X}(y))$.
- Therefore, the worst-case error is

$$
e^{*}(f)=\sup _{y \in \mathbb{Y}} r(\mathbb{X}(y))
$$

- How to efficiently compute the Chebyshev center?
- How to characterize the performance of the optimal estimator?

Some Definitions

- Let $\mathcal{I}=\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \subset\{1,2, \ldots, m\}$ be an index set.
- Define

$$
y_{\mathcal{I}} \triangleq\left[\begin{array}{c}
y_{i_{1}} \\
y_{i_{2}} \\
\vdots \\
y_{i_{j}}
\end{array}\right], a_{\mathcal{I}} \triangleq\left[\begin{array}{c}
a_{i_{1}} \\
a_{i_{2}} \\
\vdots \\
a_{i_{j}}
\end{array}\right], H_{\mathcal{I}} \triangleq\left[\begin{array}{c}
h_{i_{1}} \\
h_{i_{2}} \\
\vdots \\
h_{i_{j}}
\end{array}\right] . G_{\mathcal{I}} \triangleq\left[\begin{array}{c}
g g_{i_{1}} \\
g_{i_{2}} \\
\vdots \\
g_{i_{j}}
\end{array}\right] .
$$

The Shape of $\mathbb{X}(y)$

- Consider an index set $\mathcal{I}=\left\{i_{1}, \ldots, i_{m-1}\right\}$.
- Define set $\mathbb{X}_{\mathcal{I}}(y) \subset \mathbb{R}^{n}$ as

$$
\mathbb{X}_{\mathcal{I}}(y) \triangleq\left\{x: \exists\|w\| \leq \delta, a_{\mathcal{I}}=0, \text { such that } y=H x+G w+a\right\}
$$

- The set \mathbb{X} can be seen as

$$
\mathbb{X}(y)=\bigcup_{|\mathcal{I}|=m-1} \mathbb{X}_{\mathcal{I}}(y)
$$

- Since $a_{\mathcal{I}}=0$ and $a_{\mathcal{I} c}$ could be any vector, $y=H x+G w+a$ is equivalent to

$$
y_{\mathcal{I}}=H_{\mathcal{I} X}+G_{\mathcal{I}} W .
$$

The Shape of $\mathbb{X}_{\mathcal{I}}(y)$

- Define

$$
\begin{aligned}
& F_{\mathcal{I}} \triangleq G_{\mathcal{I}} G_{\mathcal{I}}^{T}, K_{\mathcal{I}} \triangleq\left(H_{\mathcal{I}}^{T} F_{\mathcal{I}}^{-1} H_{\mathcal{I}}\right)^{-1} H_{\mathcal{I}}^{T} F_{\mathcal{I}}^{-1} \\
& P_{\mathcal{I}} \triangleq\left(H_{\mathcal{I}}^{T} F_{\mathcal{I}}^{-1} H_{\mathcal{I}}\right)^{-1}, U_{\mathcal{I}} \triangleq\left(I-H_{\mathcal{I}} K_{\mathcal{I}}\right)^{T} F_{\mathcal{I}}^{-1}\left(I-H_{\mathcal{I}} K_{\mathcal{I}}\right)
\end{aligned}
$$

- Define

$$
\hat{x}_{\mathcal{I}}(y)=K_{\mathcal{I}} y_{\mathcal{I}}, \varepsilon_{\mathcal{I}}(y)=y_{\mathcal{I}}^{\top} U_{\mathcal{I}} y_{\mathcal{I}} .
$$

Theorem (The shape of $\mathbb{X}_{\mathcal{I}}(y)$)

If $\varepsilon_{\mathcal{I}}(y)>\delta^{2}$, then $\mathbb{X}_{\mathcal{I}}(y)$ is an empty set. Otherwise, $\mathbb{X}_{\mathcal{I}}(y)$ is an ellipsoid given by

$$
\mathbb{X}_{\mathcal{I}}(y)=\left\{x:\left(x-\hat{x}_{\mathcal{I}}(y)\right)^{T} P_{\mathcal{I}}^{-1}\left(x-\hat{x}_{\mathcal{I}}(y)\right) \leq \delta^{2}-\varepsilon_{\mathcal{I}}(y)\right\} .
$$

How to Compute the Chebyshev Center of $\mathbb{X}(y)$.

Theorem (LMI Formulation)

A ball $B(x, r)$ covers $\mathbb{X}(y)$ if and only if for every index set $|\mathcal{I}|=m-l$, such that

$$
\varepsilon_{\mathcal{I}}(y) \leq \delta^{2}
$$

there exists $\tau_{\mathcal{I}} \geq 0$, such that

$$
\tau_{\mathcal{I}} \Omega_{\mathcal{I}} \geq\left[\begin{array}{ccc}
1 & -x & 0 \\
-x^{T} & -r^{2} & x^{T} \\
0 & x & -1
\end{array}\right]
$$

where $\Omega_{\mathcal{I}}$ is defined as,

$$
\Omega_{\mathcal{I}}=\left[\begin{array}{ccc}
P_{\mathcal{I}}^{-1} & -P_{\mathcal{I}}^{-1} \hat{x}_{\mathcal{I}}(y) & 0 \\
-\hat{x}_{\mathcal{I}}(y)^{T} P_{\mathcal{I}}^{-1} & \hat{x}_{\mathcal{I}}(y)^{T} P_{\mathcal{I}}^{-1} \hat{x}_{\mathcal{I}}(y)+\varepsilon_{\mathcal{I}}(y)-\delta^{2} & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

An SDP Algorithm to Compute the Chebyshev Center

The Chebyshev center of $\mathbb{X}(y)$ can be computed via the following SDP:

SDP

$$
\begin{array}{ll}
\underset{\hat{x}, \varphi, \tau_{\mathcal{I}}}{\operatorname{minimize}} & \varphi \\
\text { subject to } & \varphi \geq 0, \\
& \tau_{\mathcal{I}} \geq 0, \\
& \tau_{\mathcal{I}} \Omega_{\mathcal{I}} \geq\left[\begin{array}{ccc}
1 & -\hat{x} & 0 \\
-\hat{x}^{T} & -\varphi & \hat{x}^{T} \\
0 & \hat{x} & -1
\end{array}\right], \text { if } \varepsilon_{\mathcal{I}}(y) \leq \delta^{2} .
\end{array}
$$

where the radius of the Chebyshev ball is $r=\sqrt{\varphi}$.

The Performance of the Optimal Estimator

Theorem (Bounds on $e^{*}(f)$)

- If there exists an index set $\mathcal{K} \subset \mathcal{S}$ with cardinality $m-2$, such that $H_{\mathcal{K}}$ is not of full column rank, then $e^{*}=\infty$.
- If for all $|\mathcal{K}|=m-2 l, H_{\mathcal{K}}$ is full column rank, then for all possible $y \in \mathbb{Y}$, we have

$$
\sup _{y \in \mathbb{Y}} d(\mathbb{X}(y))=2 \delta \max _{|\mathcal{K}|=m-2 l} \sqrt{\sigma\left(P_{\mathcal{K}}\right)} .
$$

Therefore, e^{*} satisfies

$$
\max _{|\mathcal{K}|=m-2 \mid} \delta \sqrt{\sigma\left(P_{\mathcal{K}}\right)} \leq e^{*} \leq \max _{|\mathcal{K}|=m-2 \mid} \delta \sqrt{2 \sigma\left(P_{\mathcal{K}}\right)},
$$

where $\sigma(P)$ is the spectral radius of P.

Numerical Examples

- We consider the following system:

$$
H=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right], G=I
$$

- Assume 1 sensor is compromised.
- The y is chosen to maximize $r(\mathbb{X}(y))$:

$$
y=\left[\begin{array}{c}
-0.851 \\
2.753 \\
0.5257 \\
0
\end{array}\right]
$$

- The optimal state estimate is

$$
\hat{x}=\left[\begin{array}{c}
-0.851 \\
1.376
\end{array}\right]
$$

and the corresponding error is 1.618 .

Numerical Examples

Figure: The performance of the optimal state estimator. The green ellipse corresponds to $\mathbb{X}_{\{1,3,4\}}(y)$ and the red ellipse corresponds to $\mathbb{X}_{\{1,2,3\}}(y)$. The set $\mathbb{X}_{\{2,3,4\}}(y)$ and $\mathbb{X}_{\{1,2,4\}}(y)$ is empty. The black " + " is the optimal state estimate while the black dashed line is the Chebyshev ball for $\mathbb{X}(y)$.

Conclusion and Future Work

- We consider the problem of state estimation from static sensory data, which could be compromised by an adversary.
- We provide an SDP algorithm to compute the optimal state estimate.
- We also characterize the performance of the optimal estimator.
- We would like to consider more general sensor model (stochastic sensor noise, non-linear sensor model) and dynamic state estimation problem in the future.

