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Abstract

We consider the problem of resilient state estimation in the presence of integrity attacks. There are m sensors monitoring the
state and p of them are under attack. The sensory data collected by the compromised sensors can be manipulated arbitrarily
by the attacker. The classical estimators such as the least squares estimator may not provide a reliable estimate under the
so-called (p,m)-sparse attack. In this work, we are not restricting our efforts in studying whether any specific estimator is
resilient to the attack or not, but instead we aim to present some generic sufficient and necessary conditions for resilience by
considering a general class of convex optimization based estimators. The sufficient and necessary conditions are shown to be
tight, with a trivial gap. We further specialize our result to scalar sensor measurements case. Experimental results tested on
the IEEE 14-bus test system validate the theoretical analysis.
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1 Introduction

Cyber-physical security has drawn increasing research attention Cárdenas et al. [2008], Amin [2012], Ozay et al.
[2013], Li et al. [2015], Zhang et al. [2015] since the first Supervisory Control And Data Acquisition (SCADA)
system malware (called Stuxnet) was discovered and investigated Chen [2010], Fidler [2011]. One important class
of attacks is known as integrity attack on the sensory data. Due to the sparsely spatial deployment of the sensors,
full protection during the collection and transmission of the sensory data cannot often be guaranteed. The attacker
launches such an attack in industrial systems for various purposes, such as creating arbitrage opportunities in
electricity market, stealing gas or oil without being noticed, posing potential threat to national defense, etc. Briefly
speaking, the dominant feature of integrity attack is that the attacker can take full control of a subset of sensors
and can arbitrarily change the measurements.

One way to deal with malicious measurements is to treat them as bad data or outliers. In the context of power
systems, the problem of bad data detection has been studied over the past decades Handschin et al. [1975], Mili
et al. [1985]. The method of checking the magnitude of residue is useful for identifying random bad data or outliers
but may not work for intentional integrity attacks Sandberg et al. [2010], Xie et al. [2011]. For example, Liu et
al. Liu et al. [2009] successfully showed that a stealthy attack changing the state while not being detected is possible.
Kim et al. Kim et al. [2014] studied a so-called framing attack. Under such an attack, the bad data detector is
misled to delete those critical measurements, without which the network is unobservable and a convert attack may
be launched.

For dynamical systems, detecting malicious components via fault detection and isolation based methods has also
been extensively studied Pasqualetti et al. [2010, 2011], Sundaram et al. [2010], Fawzi et al. [2014], Chong et al.
[2015]. The system, however, is assumed to be noiseless in these cases, which greatly favors the failure detector.
Pajic et al. Pajic et al. [2014] extended the work by considering the systems with bounded noise. On the top of
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sufficient conditions for exact recovery in noiseless case Fawzi et al. [2014], they showed that the worst error is still
bounded even under attack. However, their estimator is based on a combinatorial optimization problem, which in
general is computationally hard to solve and may not be applicable for large scale systems. In Pajic et al. [2015], the
authors derived an estimator based on solving an l1 optimization problem. However, the bounds that they derive
are conservative when there are multiple sensors being attacked. In Mo et al. [2010], Mo and Sinopoli [2010], the
authors also consider a noisy linear system and use reachability analysis and ellipsoid approximation to characterize
all possible biases the adversary can inject to the system.

For statisticians, the concept of robust estimators has been prevailing for decades Kassam et al. [1985], Maronna
et al. [2006], Huber and Ronchetti [2009]. The robustness is often measured by breakdown points Hampel [1971],
Donoho and Huber [1983] or influence functions Hampel [1974]. Most literature studied one or several estimators and
discussed the breakdown point properties and a unified analysis for most useful estimators is still absent. Moreover,
in most of the above works, the state is usually a scalar, which may not be applicable for many control systems.

In this paper, we focus on the problem of resilient state estimation against sparse integrity attacks. To be concrete,
we consider estimating a vector state x ∈ Rn from measurements collected by m sensors, where the measurements
are subject to any random noise. For practical reasons, the spatially distributed sensors cannot be fully guaranteed
to be secure. Some of them may be controlled by the attacker and due to the resource limitation the attacker can
only attack up to p < m sensors. Without posing any restrictions on the attacker, we assume that the compromised
sensory data can be arbitrarily changed.

Motivated by different behaviours of various estimators under the integrity attacks, we target for proposing a unified
resilience analysis framework integrating most commonly used estimators. In this work we consider static state
estimation which has wide applications such as power systems and smart grid. Moreover, the main results introduced
later provide fundamental insights on the counterpart for the dynamical systems which we are still investigating. We
now summarize our main contributions as follows.

(1) We integrate most commonly used estimators in a generic form of convex optimization based estimators and
conduct the resilience analysis over a large class of estimators. To the best of our knowledge, this is the first time
to study the cyber-physical security problem in a unified approach rather than focus on a concrete estimator.

(2) By formally defining the resilience of an estimator, we derive the necessary and sufficient conditions on the
resilience of such a general estimator. The paramount significance of this work is that the novel analytical
methodology presented in this manuscript can be used for characterizing and designing a specific resilient
estimator in the presence of compromised sensory data.

(3) From a practical point of view, we also provide some conservative but verifiable sufficient and necessary condi-
tions for the resilience of the estimator in the scalar measurement case.

(4) Besides the theoretical contributions, we also demonstrate numerical experiments on the IEEE 14-bus test
system and validate the analytical results.

The rest of the paper is organized as follows. In Section 2 we formulate the resilient estimation problem. Our main
results on the resilience of a general convex optimization based estimator is presented in Section 3. We specialize
our results for scalar sensor case in Section 4. The simulation results and concluding remarks are given in Section 5
and 6.

2 Problem Setup

2.1 System Model

Assume that m sensors are measuring the state x and the measurement equation for the ith sensor is given by

zi = Hix+ wi, (1)

where x ∈ Rn is the state of interest, zi ∈ Rmi is the “true” measurement collected by the ith sensor, and wi ∈ Rmi

is the measurement noise for the ith sensor. The measurement matrix H , [H>1 , H
>
2 , . . . ,H

>
i ]> ∈ R(

∑
i
mi)×n is

assumed to be observable, i.e., H is full column rank. In the presence of attacks, the measurement equation can be
written as

yi = zi + ai = Hix+ wi + ai, (2)
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where yi ∈ Rmi is the “manipulated” measurement and ai ∈ Rmi is the attack vector. In other words, the attacker
can change the measurement of the ith sensor by ai. Denote

z , [z>1 , z
>
2 , . . . , z

>
m]>, y , [y>1 , y

>
2 , . . . , y

>
m]>, (3)

w , [w>1 , w
>
2 , . . . , w

>
m]>, a , [a>1 , a

>
2 , . . . , a

>
m]>.

Denote the index set of all sensors as S , {1, 2, . . . ,m}. For any index set I ⊆ S, define the complement set to

be Ic , S\I. In our attack model, we assume that the attacker can only compromise at most p sensors but can
arbitrarily choose ai. Formally, a (p,m)-sparse attack can be defined as

Definition 1 ((p,m)-sparse attack) A vector a is called a (p,m)-sparse attack if there exists an index set I ⊂ S,
such that:

(i) ‖ai‖ = 0, ∀i ∈ Ic;
(ii) |I| ≤ p.

Define the collection of all possible index sets of malicious sensors as

C , {I : I ⊂ S, |I| = p}.

The set of all possible (p,m)-sparse attacks is denoted as

A ,
⋃
I∈C
{a : ‖ai‖ = 0, i ∈ Ic}.

The main task of this work is to investigate the sufficient and necessary conditions for a generic convex optimization
based estimator to be resilient to (p,m)-sparse attacks. To this end, we first formally define the resilience of an
estimator.

Definition 2 (Resilience) An estimator g : R
∑

i
mi 7→ Rn which maps the measurements y to a state estimate x̂

is said to be resilient to the (p,m)-sparse attack if it satisfies the following condition:

‖g(z)− g(z + a)‖ ≤ µ(z), ∀a ∈ A, (4)

where µ : R
∑

i
mi 7→ R is a real-valued mapping on z.

The resilience implies that the disturbance on the state estimate caused by an arbitrary attack is bounded. A trivial
resilient estimator is g(y) = 0 which provides very poor estimate. Therefore, another desirable property for an
estimator is translation invariance, which is defined as follows:

Definition 3 (Translation invariance) An estimator g is translation invariant if g(y+Hu) = u+g(y), ∀u ∈ Rn.

Remark 1 Notice that if an estimator is resilient and translation invariant, then

‖g(z)− g(z + a)‖ = ‖x+ g(w)− x− g(w + a)‖
= ‖g(w)− g(w + a)‖ ≤ µ(w).

Therefore, the maximum bias that can be injected by an adversary is only a function of the noise w.

In the next subsection, we propose a general convex optimization based estimator which is translation invariant.

3



2.2 A General Convex Estimator

A large variety of estimators are developed by the research community to solve the state estimation problem. In
order to achieve greater generality, we first propose a general convex optimization based estimator. We then show
that many estimators can be rewritten in this general framework.

The estimator that we study in this paper is assumed to have the following form:

x̂ = g(y) , arg min
x̂

∑
i∈S

fi(yi −Hix̂), (5)

where the following properties of function fi : Rmi 7→ R are assumed:

(i) fi is convex.
(ii) fi is symmetric, i.e., fi(u) = fi(−u).

(iii) fi is non-negative and fi(0) = 0.

Remark 2 One can view yi−Hix̂ as the residue for the ith sensor and fi as a cost function. The convex constraints
on fi ensure that the minimization problem can be solved in an efficient (possibly also distributed) fashion. The
symmetric assumption on fi is typically true for many practically used estimator and can actually be relaxed. By
the first two assumptions, the function fi will achieve minimum at 0. Therefore, without loss of generality, we can
assume that the last assumption holds by adding a constant to fi to ensure fi(0) = 0 and fi(x) ≥ 0.

It is easy to check that the estimation (5) is translation invariant. In fact, if x̂∗ = g(y), then

g(y +Hu) = arg min
x̂

∑
i∈S

fi [yi −Hi(x̂− u)] ,

which implies that g(y +Hu)− u = x̂∗.

We now investigate several commonly used estimators and show that they can be written as (5).

(a) Least Square Estimator:

x̂ = arg min
x̂

‖y −Hx̂‖22 = arg min
x̂

∑
i∈S
‖yi −Hix̂‖22

= (H>H)−1H>y. (6)

(b) Another example is an estimator which minimizes the sum of the l1 norm of the residue, i.e.,

x̂ = arg min
x̂

∑
i∈S
‖yi −Hix̂‖1 . (7)

In the case where mi = n and Hi = In, ∀i, the estimate is a vector in which the ith entry is the median over
the ith entries of all measurements yi’s.

(c) The following is designed to minimize the sum of the l2 norm of the residue:

x̂ = arg min
x̂

∑
i∈S
‖yi −Hix̂‖2 . (8)

The optimal estimate in the case where mi = n and Hi = In, ∀i is the geometric median of all yi’s, which is
called an L1 estimator in Lopuhaa and Rousseeuw [1991]. In other words, x̂ is the point in Rn that minimizes
the sum of Euclidean distances from yi to that point.
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(d) Pajic et al. Pajic et al. [2014, 2015] proposed the following resilient estimator in the presence of integrity attack:

minimize
x̂,a,w

∥∥∥∥∥∥∥∥∥


‖a1‖2

...

‖am‖2


∥∥∥∥∥∥∥∥∥

0

subject to yi = Hix̂+ wi + ai,

w = [w>1 , . . . , w
>
m]> ∈ Ω,

where the authors assume that the noise is bounded and lies in a convex set Ω. However, this minimization
problem involves zero-norm, and thus is difficult to solve in general. A commonly adopted approach is to use L1

relaxation to approximate zero-norm, which leads to the following minimization problem:

minimize
x̂,a,w

∑
i∈S
‖ai‖2 (9)

subject to yi = Hix̂+ wi + ai,

w ∈ Ω.

Assuming that Ω can be written as a product set Ω = Ω1×· · ·×Ωm, then the constraint on w can be decoupled
as

w ∈ Ω⇔ wi ∈ Ωi, ∀i.

By the convexity of Ω, each Ωi must also be convex. We can define the following function

fi(r) , min
r−ai∈Ωi

‖ai‖2. (10)

As a result, the relaxed minimization problem can be written as

x̂ = arg min
x̂

∑
i∈S

fi(yi −Hix̂). (11)

(e) Similarly to the previous example, we can consider the following LASSO Tibshirani [1996] estimator:

minimize
x̂,a,w

‖w‖2 + λ‖a‖1 (12)

subject to y = Hx̂+ w + a.

If we define the following function:

f(r) , minimize
ai

‖r − ai‖22 + λ ‖ai‖1 (13)

Then one can easily prove that the optimization problem (12) can be rewritten as

x̂ = arg min
x̂

∑
i∈S

f(yi −Hix̂). (14)

In the next section, we shall present sufficient and necessary conditions for the resilience of the general estimator
(5). Since (6), (7), (8) and (14) are all special cases of (5), we can easily analyze their individual resilience.

3 Resilience Analysis for a General Estimator

This section is devoted to the derivation of necessary and sufficient conditions for the resilience of the general
estimator. Denote the compact set U , {u ∈ Rn : ‖u‖ = 1}. Before proceeding to the main results, we need the
following lemma.
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Lemma 1 Let q : R→ R be a convex function and q(0) = 0, then q(t)/t is monotonically non-decreasing on t ∈ R+.
Moreover,

q(t+ 1)− q(t) ≥ q(t)/t. (15)

Proof. For any 0 < α < 1, we have

q(αt) ≤ αq(t) + q(0) = αq(t).

Divide both side by αt, we can prove that q(t)/t is monotonically non-decreasing. Therefore, q(t+1)/(t+1) ≥ q(t)/t,
which implies (15). �

As a consequence of the convexity of fi(tHiu) in terms of t and Lemma 1, we know that fi(tHiu)/t is monotonically
non-decreasing on t ∈ R+. As a result, there are only two possibilities:

(i) fi(tHiu)/t is bounded for all i and for all u, which implies that the limit limt→∞ fi(tHiu)/t exists.
(ii) fi(tHiu)/t is unbounded for some i and u.

The next lemma provides several important properties for the case where limt→∞ fi(tHiu)/t exists, whose proof is
reported in the appendix:

Lemma 2 If the following limit is well defined, i.e., finite, for all u ∈ Rn:

lim
t→∞

fi(tHiu)

t
= Ci(u), (16)

then the following statements are true:

(i) Ci(αu) = |α|Ci(u) and Ci(u1 + u2) ≤ Ci(u1) + Ci(u2).
(ii) Define the function hi(u, v, t) : Rn × Rmi × R 7→ R,

hi(u, v, t) ,
1

t
[fi(v + tHiu)− fi(v)] . (17)

Then the following pointwise limit holds:

lim
t→∞

hi(u, v, t) = Ci(u). (18)

Moreover, the convergence is uniform on any compact set of (u, v).
(iii) For any v and u, we have that

fi(v +Hiu)− fi(v) ≤ Ci(u). (19)

Remark 3 Intuitively speaking, one can interpret fi as a potential function and the derivative of fi as the force
generated by sensor i (if it is differentiable). By (19), we know that the force from the potential function fi along
the u direction cannot exceed Ci(u) (or Ci(u)/‖u‖ to normalize). On the other hand, Equation (18) implies that this
bound is tight.

We now give the sufficient condition for the resilience of the estimator.

Theorem 1 (Sufficient condition) If the following conditions hold:

(1) Ci(u) is well defined for all u ∈ Rn and all i ∈ S;
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(2) the following inequality holds for all non-zero u:∑
i∈I

Ci(u) <
∑
i∈Ic

Ci(u), ∀I ∈ C, (20)

then the estimator g is resilient.

Proof. Our goal is to prove that there exists a β(z) where β : R
∑

i
mi 7→ R, such that for any t ≥ β(z), ‖u‖ = 1,

a ∈ A, the following inequality holds:∑
i∈S

fi(yi −Hi × tu) <
∑
i∈S

fi(yi −Hi × (t+ 1)u). (21)

As a result, any point ‖x̂‖ ≥ β(z) + 1 cannot be the solution of the optimization problem since there exists a better
point (‖x̂‖ − 1)x̂/‖x̂‖. Therefore, we must have ‖g(y)‖ ≤ β(z) + 1 and hence the estimator is resilient.

Suppose the set of malicious sensors is I, to prove (21), we will first look at benign sensors. Due to the uniform
convergence of hi(u, v, t) to Ci(u) on U × {−zi} shown in Lemma 2, given any δ > 0 we can always find a finite
constant Ni(zi, δ) where Ni : Rmi × R 7→ R such that for all t ≥ Ni(zi, δ), the following inequality holds:

hi(−zi, u, t) =
1

t
[fi(tHiu− zi)− fi(−zi)] ≥ Ci(u)− δ, (22)

for any ‖u‖ = 1. By (15), we can derive that

fi((t+ 1)Hiu− zi)− fi(tHiu− zi) ≥ Ci(u)− δ. (23)

We fix δ to be

δ =
1

m
min
‖u‖=1

min
I∈C

(∑
i∈Ic

Ci(u)−
∑
i∈I

Ci(u)

)
. (24)

and take β(z) in the following form:
β(z) = max

1≤i≤m
Ni(δ, zi).

Notice that we write min‖u‖=1 instead of inf‖u‖=1 since Ci(u) is continuous and the set {u : ‖u‖ = 1} is compact.
Hence, the infimum is achievable, which further proves that δ > 0 is strictly positive. Hence, for i = 1, . . . ,m, if
t > β(z) we have

fi((t+ 1)Hiu− zi)− fi(tHiu− zi)
≥ Ci(u)− δ, ∀‖u‖ = 1. (25)

Since for good sensors, zi = yi, we know that∑
i∈Ic

[fi((t+ 1)Hiu− zi)− fi(tHiu− zi)]

≥
∑
i∈Ic

Ci(u)− (m− p)δ, ∀‖u‖ = 1. (26)

We now consider malicious sensors. By Lemma 2 (iii), we know that for i ∈ I, and any u∑
i∈I

fi(yi − tHiu)−
∑
i∈I

fi(yi − (t+ 1)Hiu) ≤
∑
i∈I

Ci(−u). (27)
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Hence from (24), (27) and (26), we know that∑
i∈S

fi(yi − (t+ 1)Hiu)−
∑
i∈S

fi(yi − tHiu)

≥
∑
i∈Ic

Ci(u)−
∑
i∈I

Ci(u)− (m− p)δ > 0,

which proves (21). �

Remark 4 A natural question after proving the resilience of an estimator is to quantify the resilience, i.e., by
knowing µ(z) in (4). The constructive proof of Theorem 1 also sheds light on the derivation of a tight µ(z). From
the proof, we know that µ(z) = β(z) + 1 where β(z) is dependent on the specific form of fi in (5).

We next give necessary conditions for the resilience of the estimator.

Theorem 2 (Necessary Condition I) If Ci(u) is well defined for all u ∈ Rn and all i ∈ S but there exist a unit
vector u0 and an index set I0 ∈ C such that ∑

i∈I0

Ci(u0) >
∑
i∈Ic0

Ci(u0), (28)

then the estimator is not resilient to the attack.

Proof. The resilience of the estimator is equivalent to that the optimal estimate x̂ satisfies ‖x̂‖ ≤ µ(z) for all a ∈ A,
where µ is a real-valued function. To this end, we will prove that for any r > 0, there exists an attack a such that
all x̂ that satisfies ‖x̂‖ ≤ r cannot be the optimal solution of (5).

We will first look at the compromised sensors. For every δ > 0 we can always find a finite constant Ni(δ) such that
for any x̂ ∈ {x̂ : ‖x̂‖ ≤ r} and for all t > Ni, the following inequality holds:

fi(tHiu0 −Hix̂)− fi(tHiu0 −Hi(x̂+ u0))

≥fi((t+ 1)Hiu0 −Hi(x̂+ u0))

− fi(tHiu0 −Hi(x̂+ u0))

≥hi(u0,−Hi(x̂+ u0), t) ≥ Ci(u0)− δ, ∀i ∈ I0. (29)

The first inequality is derived from (15). The second inequality is due to the uniform convergence of hi(u, v, t) to
Ci(u) on {u0} × {v : v = −Hix+ u0, ‖x‖ ≤ r}.

Let us choose

δ =
1

m

∑
i∈I0

Ci(u0)−
∑
i∈Ic0

Ci(u0)

 ,

and t = maxi∈I0 Ni(δ) and yi = tHiu0 for all i ∈ I0, then we know for any ‖x̂‖ ≤ r,∑
i∈I0

[fi(yi −Hix̂)− fi(yi −Hi(x̂+ u0))]

≥
∑
i∈I0

Ci(u0)− pδ.

Now let us look at the benign sensors. By Lemma 2 (iii) we have

fi(zi −Hi(x̂+ u0))− fi(zi −Hix̂) ≤ Ci(u0), ∀i ∈ Ic0. (30)
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From (29) and (30),∑
i∈S

fi(yi −Hi(x̂+ u0))−
∑
i∈S

fi(yi −Hix̂)

≤
∑
i∈Ic0

Ci(u0)−
∑
i∈I0

Ci(u0) + pδ < 0.

Thus for such a y satisfying

yi =

{
zi, if i ∈ Ic0
tHiu0, if i ∈ I0,

x̂+u0 is a better estimate than all x̂ satisfying ‖x̂‖ ≤ r. Since r is an arbitrary positive real number, we can conclude
that the estimator is not resilient. �

Theorem 3 (Necessary Condition II) If there exist u0 ∈ Rn and i ∈ I such that

lim
t→∞

fi(tHiu0)

t
→ +∞, (31)

then the estimator is not resilient to the attack.

Before proving Theorem 3, we need the following lemma whose proof is reported in appendix.

Lemma 3 If the condition (31) holds, for any M > 0 and for all v in a compact set V ⊂ Rmi , there exists N
(depending on M and the set V) such that the following inequality holds:

hj(u0, v, t) > M, ∀v ∈ V, t ≥ N (32)

Now we are ready to prove the theorem.

Proof. Similar to Theorem 2, we will prove that for any r > 0, there exists a y such that any x̂ that satisfies ‖x̂‖ ≤ r
cannot be the optimal solution of (5).

We first look at any sensor i, where i 6= j. Since a continuous function achieves its supremum on a compact set, we
know that the following supremum is well defined (not infinite)

sup
‖x̂‖≤r

[f(zi −Hi(x̂+ u0))− f(zi −Hix̂)] = Mi,

which implies that for all ‖x̂‖ ≤ r, we can find M > 0, such that∑
i 6=j

f(zi −Hi(x̂+ u0))−
∑
i 6=j

f(zi −Hix̂) ≤M. (33)

Now let us consider sensor j. Due to Lemma 3, we can find a t, such that for all ‖x̂‖ ≤ r, the following inequality
holds:

hj(u0,−Hj(x̂+ u0), t) > M.

Using Lemma 1, we have

f((t+ 1)Hju0 −Hj(x̂+ u0))− f(tHju0 −Hj(x̂+ u0))

= f(tHju0 −Hj x̂)− f(tHju0 −Hj(x̂+ u0))

≥ hj(u0,−Hj(x̂+ u0), t) > M. (34)
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Now consider the following y

yi =

{
zi, if i 6= j

tHju0, if i = j,

Combining (33) and (34), we know that for all ‖x̂‖ ≤ r, the following inequality holds∑
i∈S

f(yi −Hi(x̂+ u0))−
∑
i∈S

f(yi −Hix̂) < 0,

which implies that the optimal solution of (5) cannot be inside the ball {x̂ : ‖x̂‖ ≤ r}. Now since r > 0 is arbitrary,
we know the estimator is not resilient. �

Before continuing on, we would like to provide some remarks on the main result. First, it is worth noticing that the
existence of a well defined limit of fi(tHiu)/t is crucial for the resilience of g as Theorem 3 suggested. This implies
that the least square estimator cannot be resilient since fi is in quadratic form. Using the potential function and
force analogies in Remark 3, one can interpret the results presented in this section as: the estimator g is resilient if
the force generated by any sensor is bounded and if the combined force of any collection of p sensors is strictly less
than the combined force of the remaining m− p sensors.

Secondly, one can see that the conditions proved in Theorem 1, 2 and 3 are very tight, with only a trivial gap where
the LHS of (28) equals the RHS.

Finally, we want to point out that the condition (20) is non-trivial to check since it requires us to verify against all
possible u. In the next subsection, we consider a special case where each yi is a scalar and provide a more conservative
but verifiable sufficient condition for the resilience of the estimator.

4 Scalar Measurement Case: More Analysis

In this section, we specialize our results to the scalar measurement case, i.e., mi = 1, ∀i ∈ S. Throughout this section,
we assume that the following limit is well-defined (otherwise by Theorem 3, the estimator cannot be resilient):

αi , lim
t→∞

fi(t)/t. (35)

It is not difficult to prove that Ci(u) = |αiHiu|. With slight abuse of notation, define Ci , αiHi, then Ci(u) = |Ciu|.
For any index set I = {i1, . . . , il} ⊂ S, define

CI ,
[
C>i1 · · · C

>
il

]>
. (36)

From Theorem 1 and Theorem 2, we have the following sufficient and necessary conditions for resilience of g.

Proposition 1 (a) If for all possible index set I and all non-zero u ∈ Rn the following inequality holds:

‖CIu‖1 =
∑
i∈I
|Ciu| <

∑
i∈Ic
|Ciu| = ‖CIcu‖1, (37)

then the estimator g is resilient.
(b) If there exists an index set I and a u ∈ Rn such that the following inequality holds:

‖CIu‖1 > ‖CIcu‖1, (38)

then the estimator g is not resilient.
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Remark 5 Note that in this special case of scalar measurements the sufficient and necessary conditions resemble the
well-known nullspace property in compressed sensing and sparse signal recovery fawzi Eldar and Kutyniok [2012].
A similar result [Fawzi et al., 2014, Proposition 6] is also given for the decoding condition without any noise. In
this paper we prove a more general result, i.e., Theorem 1, 2 and 3, regarding the resiliency of a large collection of
estimators in the noisy case.

The main difficulty in Proposition 1 is to validate (37) or falsify (38) over all non-zero u’s. We next show Proposition
1 in a more practically useful version when p is not large. Let ρ ∈ Rp be a vector with all entries from {−1, 1} and
D be the set of all possible ρ’s. Note that the cardinality of D is 2p.

Theorem 4 Consider the following
(
m
p

)
× 2p optimization problems for any index set I ⊂ S with cardinality p and

for any ρ ∈ D:

maximize
u∈Rn

ρ>CIu

subject to ‖CSu‖1 = 1. (39)

(a) If the optimal values of the above optimization problems are all strictly less than 1/2, then the estimator g is
resilient.

(b) If the optimal value of any one of the above optimization problems is strictly larger than 1/2, then the estimator
g is not resilient.

Proof. Since ‖CIu‖1 = |Ci1u|+ . . .+
∣∣Cipu∣∣, we know that the following two optimization problems are equivalent:

maximize
u∈Rn

‖CIu‖1

subject to ‖CSu‖1 = 1, (40)

and

maximize
ρ∈D

maximize
u∈Rn

ρ>CIu

subject to ‖CSu‖1 = 1. (41)

Due to ‖CIu‖1 + ‖CIcu‖1 = ‖CSu‖1, we have

‖CIu‖1 ≶ ‖CIcu‖1 ⇔ ‖CIu‖1 ≶
1

2
‖CSu‖1. (42)

If for all u and I the optimal value of (40) is strictly less than 1/2, from (37) and (42) we can conclude that g is
resilient. In a similar way we can prove (b). �

Theorem 4(a) requires
(
m
p

)
× 2p enumerations of solving the optimization problem. In the next two theorems, we

propose more conservative sufficient and necessary condition for resilience with computational complexity of
(
m
p

)
.

Theorem 5 If for any index set I ⊂ S with cardinality p, the optimal value of the following optimization problem
is strictly less than 1:

minimize
K∈Rn×(m−p)

‖CIK‖1

subject to KCIc = In, (43)

then the estimator g is resilient.

11



Proof. Let K ∈ Rn×(m−p) such that KCIc = In. Denote ξ = CIcu. We have CIu = CIKξ. Therefore, if for all
ξ 6= 0, ‖CIKξ‖1 < ‖ξ‖1, i.e., ‖CIK‖1 < 1, then

‖CIu‖1 < ‖CIcu‖1.

By enumerating all possible I we conclude the proof. �

Notice that (43) is not necessary. Since ξ = CIcu, ξ may not be able to take all possible value in Rm−p.

Similarly, we can find a more conservative necessary condition implied by Theorem 2. By enumerating all (CI , CIc)
and utilizing the following result, we can identify whether g is resilient for a given H or not.

Theorem 6 If there exists an index set I such that the following inequality holds:

‖CIC+
Ic‖1 > (

√
m− p+ 1)/2, (44)

where C+
Ic is the Moore-Penrose pseudo inverse of CIc , then the estimator g is not resilient.

The following lemma, whose proof is given in the appendix, is needed for the proof of Theorem 6:

Lemma 4 Let ξ ∈ Rm such that ξ = ξ‖ + ξ⊥, where ξ‖ and ξ⊥ are perpendicular to each other. Then the following
inequality holds:

‖ξ‖‖1 ≤
√
m+ 1

2
‖ξ‖1. (45)

Moreover, the above inequality is achievable when

ξ =


1

0
...

0

 , ξ‖ =
1

2


1 +m−1/2

m−1/2

...

m−1/2

 , ξ⊥ =
1

2


1−m−1/2

−m−1/2

...

−m−1/2

 .

We are now ready to prove Theorem 6:

Proof. To prove g is not resilient, from Proposition 1 we only need to show there exists a u such that ‖CIu‖1 >
‖CIcu‖1 if (44) holds. Since

∥∥CIC+
Ic
∥∥

1
> (
√
m− p+ 1)/2, we can find ξ ∈ Rm−p, such that

∥∥CIC+
Icξ
∥∥

1
>

√
m− p+ 1

2
‖ξ‖1 .

Now we can decompose ξ = ξ‖ + ξ⊥, where ξ‖ belongs to the column space of CIc and ξ⊥ is perpendicular to the

column space of CIc . By the property of Moore-Penrose inverse, C+
Icξ⊥ = 0. Therefore,∥∥CIC+

Icξ
∥∥

1
=
∥∥CIC+

Icξ‖
∥∥

1
.

On the other hand, since ξ ∈ Rm−p, by Lemma 4, we have

√
m− p+ 1

2
‖ξ‖1 ≥

∥∥ξ‖∥∥1
,

12



Fig. 1. Single line diagram of IEEE 14-bus test system Christie [2000].

which implies that ∥∥CIC+
Icξ‖

∥∥
1
>
∥∥ξ‖∥∥1

.

Since ξ‖ belongs to the column space of CIc , there exists a u, such that CIcu = ξ‖. Therefore, we can find a u, such
that

‖CIu‖1 > ‖CIcu‖1 ,

which completes the proof. �

5 Simulations

In this section we validate our main results on the IEEE 14-bus test system Christie [2000]. We simulate the state
estimation against the (p,m)-sparse attacks under the DC power flow model. We extract the observation matrix
H ∈ R34×13 of the tested system from MATPOWER Zimmerman et al. [2011]. The state variables are voltage angles
of all buses (excluding the slack Bus 1), and the scalar meter measurements are real power injections of all buses
and real power flows of all branches. For the sake of space saving, we do not include the full H matrix here and we
recommend interested readers to see Liu et al. [2011], Zimmerman et al. [2011], Christie [2000] for details.

We use the estimator g described in (12). By solving the optimization problem (13) explicitly, we know that f can
be explicitly written as:

f(u) =

{
u2, if |u| ≤ 1

2λ,

λ |u| − 1
4λ

2, if |u| > 1
2λ.

(46)

One can verify that Ci(u) = |Hiu|. According to Theorem 4, we find that g is not resilient when p ≥ 2. For instance,
when p = 2, the experiments show that there are 29 critical pairs of sensors, out of all 561 possible pairs. The “critical
pairs” mean that if the pair is simultaneously attacked the estimator is no longer resilient. Due to the limited space,
we list 8 pairs in Table 1, where BP i stands for the sensor measuring the real power flow of i-th branch 1 and BIi
means the sensor measuring the real power injection of i-th bus.

We can also check the tightness of Theorem 5 and Theorem 6 which are actually more suitable for a large p. Based
on Theorem 5, the experimental result shows that only when p = 1, the estimator g is resilient. On the other hand,
when p ≥ 3, the estimator g is not resilient from Theorem 6. The only case that Theorem 5 and 6 cannot verify is
when p = 2.

1 The branch indices follow MATPOWER Zimmerman et al. [2011]
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BP 1 BP 6 BP 7 BP 16 BI1 BI2 BI7 BI12

BI1 BI3 BI5 BI9 BI2 BI4 BI9 BI13

Table 1
Examples of 8 critical pairs of sensors. When any pair is under attack, the estimator will be not resilient.
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Fig. 2. Performance of the least square estimator (red dotted line) and the resilient estimator g (blue solid line) when no
sensors are being attacked.
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Fig. 3. Performance of the oracle least square estimator (red dotted line) and the resilient estimator g (blue solid line) when
one sensor is under attacks.

5.1 Tradeoff between efficiency and resiliency

Next we conduct experiments to compare the performance of the resilient estimator g in (14) with different tuning
factors λ’s and the least square estimator (LSE), under either normal operation or the attack. We will see the
performance of g and the important role of λ, by tuning which we can achieve a desirable tradeoff between efficiency
(MSE during normal operation) and resiliency (MSE during the attack). If attacked, the sensor monitoring the
power flow of the 4th branch marked in red in Fig.1 is assumed to be manipulated. Thus we focus more on the
state estimation of the voltage angles of Bus 2 and 4 connected by the 4th branch. Each entry of the state vector
x is assumed to be a uniform random variable in [0, 2π]. Moreover, we assume the measurement noise is Gaussian
distributed with zero mean and unit variance.
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Fig. 4. Normalized MSE (all buses) of the estimators g and φ without any attacks versus normalized MSE (all buses) of the
estimators g and φ under (1, 34)-sparse attack. The sensor monitoring the power flow of the 4th branch is assumed to be
manipulated.

Normal Operation (Fig.2): Without any attacks, we plot the mean square error (MSE) of the voltage angle of Bus 2
and Bus 4, and the total MSE of all buses versus λ, respectively. The solid curve in blue represents the MSE of LSE
as a benchmark. Note that by increasing λ, we can improve the estimation performance of g until it approximately
reaches the optimal MSE obtained by LSE.

Under the Attack (Fig.3): The sensor monitoring the power flow of the 4th branch is assumed to be manipulated
(the nominal value changed to −104). The solid curve in blue represents the MSE of the oracle LSE which exactly
knows the id of the attacked sensor and discards the corresponding measurement. The oracle LSE is impossible
to implement in practice as one in general does not know which sensors are under attack. However it provides a
theoretically lower bound on the MSE for any resilient estimator.

Notice that from Fig.3, there is an optimal λ for the estimation performance under the attack. On the other hand, the
estimation performance under normal operation is better with a larger λ. This requires us to design an appropriate
λ to obtain a desirable tradeoff between the resiliency and efficiency of g.

5.2 Comparisons of Different Choices of Estimators

For different estimators discussed in Section 2.2, we plot their MSE under normal operation and under the attack
in Fig. 4. The y-axis represents the normalized MSE of an estimator in the presence of attacks, i.e., the quotient
of MSE of g over MSE of the oracle LSE. The x-axis represents the normalized MSE when there is no attack, by
normalizing MSE of g over MSE of LSE.

The blue line in Fig. 4 represents the Lasso estimator (14). Notice that when λ→ 0, the Lasso estimator converges
to the median estimator (7) and geometric median estimator (8). From the curve, it can be seen that a good choice
of λ is around 2.

The red line in Fig. 4 represents the estimator (9). We choose the set

Ωi = {w ∈ R : |w| ≤ ε},∀i.

Notice that Pajic et al. Pajic et al. [2014, 2015] proposed to use this estimator for the bounded noise scenario.
However, in this paper, we prove that the estimator (9) is resilient to the attack even if the true wi is outside Ωi.
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Hence, in this simulation we will use ε as a tuning parameter. The plot in red illustrates the efficiency and resiliency
of the estimator (9) by varying ε. It is easy to see that for our simulation, the Lasso estimator out-performs the
estimator (9). However, it is still an open question what cost function fi should be chosen in order to achieve the
optimal performance, which we would like to pursue as a future direction.

6 Concluding Remarks

We have studied the resilient estimation problem where sensor networks are exposed to (p,m)-sparse integrity attacks.
The malicious measurements are assumed to be arbitrarily manipulated. No assumptions on the attack patterns and
fault detection mechanism make us more focused on the properties of the inherent resilience of any estimator.

Our interest is not to study any concrete estimator in the presence of attacks. Instead, we have considered a general
class of estimators which integrate a large number of important estimators as special cases and given sufficient and
necessary conditions for the resilience of the estimator. To the best of our knowledge, this is the first time to conduct
generic resilience analysis for cyber-physical systems. Moreover, we have presented more analytical results in the
scalar measurement case to render the sufficient and necessary conditions more ready to use. The experimental
results on the IEEE 14-bus test system validate our theoretical results and illustrate how to apply the theories to
real applications.

Future works include the resilience analysis for the dynamical state estimation problem. How to elegantly design the
fi’s in (5) to satisfy different applications and requirements is another interesting open problem.

7 Appendix

Proof of Lemma 2:

(i) If α = 0, then clearly Ci(0) = 0. On the other hand, if α 6= 0, from the definition in (16), we have

Ci(αu) = lim
t→∞

1

t
fi(|α|tHiu)

= |α| lim
t→∞

1

|α| t
fi(|α|tHiu) = |α|Ci(u).

The first inequality is due to the symmetry of f . Due to the scaling property of Ci(u) and the convexity of fi,
we have

Ci(u1 + u2) = 2Ci

(
u1 + u2

2

)
≤ Ci(u1) + Ci(u2).

Therefore, we know that Ci is actually a semi-norm on Rn.
(ii) Based on the convexity of fi, we obtain

2fi(
tHiu

2
) ≤ fi(v + tHiu) + fi(−v), (47)

fi(tHiu) ≥ 2fi(
2v + tHiu

2
)− f(2v). (48)

Dividing both sides of (47) and (48) by t and taking limit over t, we have

Ci(u) ≤ lim inf
t→∞

1

t
fi(v + tHiu) + lim

t→∞

1

t
fi(−v), (49)

Ci(u) ≥ lim sup
t→∞

2

t
fi(v +

t

2
Hiu)− lim

t→∞

1

t
fi(2v). (50)

Since limt→∞ fi(−v)/t = limt→∞ fi(2v)/t = 0, from (50) and (49) we have the following pointwise limit

lim
t→∞

hi(u, v, t) = Ci(u).
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Notice that for a fixed (u, v), by Lemma 1, h(u, v, t) is monotonically non-decreasing with respect to t. Fur-
thermore, Ci(u) is continuous since it is a semi-norm. Therefore, by Dini’s theorem Rudin [1964], h(u, v, t)
converges uniformly to Ci(u) on a compact set of (u, v).

(iii) By the convexity of fi, for any integer k we know that

fi(v + kHiu)− fi(v + (k − 1)Hiu)

≤ fi(v + (k + 1)Hiu)− fi(v + kHiu).

Hence we can conclude that

fi(v +Hiu)− fi(v)

≤ lim
t→∞

1

n

n∑
i=1

(fi(v + kHiu)− fi(v + (k − 1)Hiu))

= lim
t→∞

1

n
(fi(v + kHiu)− fi(v))

= Ci(u).

Thus we completes the proof. �

Proof of Lemma 3:

From (31) and (47), it is easy to see that hj(u0, v, t) diverges to infinity for all v, i.e.,

hj(u0, v, t)→ +∞. (51)

Next we will show this divergence is also uniform. DenoteWt , {v : hj(u0, v, t) > M}. Since hj(u0, v, t) is continuous
(fi is continuous due to convexity), each Wt is open. By Lemma 1, hj(u0, v, t) is monotonically non-decreasing in t.
Therefore, Wt ⊆ Wt′ if t ≤ t′ . Since for each v there exists t such that hj(u0, v, t) > M from (51),⋃

t≥0

Wt = Rmi .

Therefore, the collection {Wt} is an open cover for the compact subset V. Thus, we can find a finite coverWt1 , . . . ,Wtl
that covers V, i.e.,

V ⊆ Wt1 ∪Wt2 ∪ · · · ∪Wtl . (52)

Now we can define N = max(t1, . . . , tl). Since Wt is non-decreasing with respect to t, the RHS of (52) is WN . For
any t ≥ N , we have

V ⊆ WN ⊆ Wt,

which combined with the definition of Wt finishes the proof. �

Proof of Lemma 4:

Geometrically, ξ‖ can be written as ξ‖ = ξ/2 + r, where r ∈ {r : ‖r‖2 = ‖ξ‖2/2}. As a result, we have

‖ξ‖‖1 ≤
1

2
‖ξ‖1 + ‖r‖1 ≤

1

2
‖ξ‖1 +

√
m‖r‖2

=
1

2
‖ξ‖1 +

√
m

2
‖ξ‖2 ≤

1

2
‖ξ‖1 +

√
m

2
‖ξ‖1.
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The first inequality is due to the triangle inequality of any norm. The second and third inequalities are due to the
fact that for an m dimensional vector ξ,

‖ξ‖2 ≤ ‖ξ‖1 ≤
√
m‖ξ‖2.

Without loss of generality, let us assume that ‖ξ‖1 = 1. The achievability of (45) is easy to verify. �
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