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against Sparse Integrity Attacks
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Abstract

We consider the problem of robust estimation in the presence of integrity attacks. There are m

sensors monitoring the state and p of them are under attack. The malicious measurements collected by

the compromised sensors can be manipulated arbitrarily by the attacker. The classical estimators such as

the least squares estimator may not provide a reliable estimate under the so-called (p,m)-sparse attack.

In this work, we are not restricting our efforts in studying whether any specific estimator is resilient to

the attack or not, but instead we aim to present some generic sufficient and necessary conditions for

robustness by considering a general class of convex optimization based estimators. The sufficient and

necessary conditions are shown to be tight, with a trivial gap. We further specialize our result to scalar

sensor measurements case.

I. INTRODUCTION

The concept of networks has been increasingly prevailing for decades, e.g., computer networks,

sensor networks or social networks. Regardless of numerous benefits introduced by bridging

machines or humans through networks, the interconnect and distributed nature renders networks

vulnerable to various kinds of attacks, ranging from physical attacks to internet viruses to

groundless rumors through online social networks. This article is concerned with the integrity

attacks in sensor networks which are widely embedded in various industrial systems such as smart

grid [1] or Supervisory Control And Data Acquisition (SCADA) systems [2]. During the integrity

attack, the adversary can take full control of a subset of sensors and arbitrarily manipulate their

measurements. The motivations for launching such an attack in industrial systems may include
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creating arbitrage opportunities in electricity market, stealing gas or oil without being noticed,

posing potential threat to national defense, etc. Since the first SCADA system malware (called

Stuxnet) was discovered and extensively investigated [3], [4], increasing research attention has

been paid to resolve the security issues in estimation and control systems [5].

In this article, we focus on the problem of robust estimation against compromised sensory data

in order to mitigate the damage caused by the integrity attack. Robustness for an estimator is

urgently needed since quite a number of the commonly used estimators under attack fail to give

a reliable estimate and thus lead to poor system performance. For instance, a linear estimator is

not robust since one bad measurement is enough to ruin the final estimate. A better estimator

may be the geometric median of all measurements [6]. To be concrete, we consider the problem

of estimating a vector state x ∈ Rn from measurements collected by m sensors, where the

measurements are subject to any random noise. For practical reasons, the spatially distributed

sensors cannot be fully guaranteed to be secure. Some of them may be controlled by the attacker

and due to the resource limitation the attacker can only attack up to p < m sensors. Without

posing any restrictions on the attacker, we assume that the compromised sensory data can be

arbitrarily changed.

Related Work: A quite similar problem in the context of power systems is bad data detection,

which has been studied over the past decades [7], [8]. The method of checking the magnitude

of residue is useful for identifying random bad data or outliers but may not work for intentional

integrity attacks [9], [10]. For example, Liu et al. [11] successfully showed that a stealthy attack

changing the state while not being detected is possible. Kim et al. [12] studied a so-called framing

attack. Under such a attack, the bad data detector is misled to delete those critical measurements,

without which the network is unobservable and a convert attack may be launched.

For dynamical systems, detecting malicious components via fault detection and isolation based

methods has also been extensively studied, [13]–[17]. However, in most of these works, the

system is assumed to be noiseless, which greatly favors the failure detector. Pajic et al. [18]

improved the work by considering the systems with bounded noise. On the top of sufficient

conditions for exact recovery in noiseless case, they showed that the worst error is still bounded

even under attack. However, their estimator is based on a combinatorial optimization problem,

which in general is computational hard to solve and may not be applicable for large scale systems.

In [19], [20], the authors use reachability analysis and ellipsoid approximation to characterize
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all possible biases the adversary can inject to the system.

In the area of statistics, the concept of robust estimators is not new [21]–[23]. The robustness

is often measured by breakdown points [24], [25] or influence functions [26]. Many existing

works studied one or several estimators and discussed the breakdown point properties [27]–[30].

However, a unified analysis for most useful estimators is still absent.

Motivated by different behaviors of various estimators under the integrity attacks, we manage

to provide a unified robustness analysis framework integrating most commonly used estimators.

To reach this goal, we first give a formal definition on the robustness of an estimator. To achieve

greater generality, a general convex optimization based estimator is proposed and necessary and

sufficient conditions on the robustness of such an estimator is proved. The significance of this

work is that the analytical results presented in this manuscript can be used for characterizing

and designing a robust estimator in the presence of compromised sensory data.

The rest of the paper is organized as follows. In Section II we formulate the robust estimation

problem. Our main results on the robustness of a general convex optimization based estimator

is presented in Section III. We specialize our results for scalar sensor case in Section IV. The

concluding remarks are given in Section V.

II. PROBLEM SETUP

A. System Model

Assume that m sensors are measuring the state x and the measurement equation for the ith

sensor is given by

zi = Hix+ wi, (1)

where x ∈ Rn is the state of interest, zi ∈ Rmi is the “true” measurement collected by the ith

sensor, and wi ∈ Rmi is the measurement noise for the ith sensor. The measurement matrix

H , [H>1 , H
>
2 , . . . , H

>
i ]
> ∈ R(

∑
imi)×n is assumed to be observable, i.e., H is full column rank.

In the presence of attacks, the measurement equation can be written as

yi = zi + ai = Hix+ wi + ai, (2)
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where yi ∈ Rmi is the “manipulated” measurement and ai ∈ Rmi is the attack vector. In other

words, the attacker can change the measurement of the ith sensor by ai. Denote

z , [z>1 , z
>
2 , . . . , z

>
m]
>, y , [y>1 , y

>
2 , . . . , y

>
m]
>, (3)

w , [w>1 , w
>
2 , . . . , w

>
m]
>, a , [a>1 , a

>
2 , . . . , a

>
m]
>.

Denote the index set of all sensors as S , {1, 2, . . . ,m}. For any index set I ⊆ S, define

the complement set to be Ic , S\I. In our attack model, we assume that the attacker can only

compromise at most p sensors but can arbitrarily choose ai. Formally, a (p,m)-sparse attack can

be defined as

Definition 1 ((p,m)-sparse attack): A vector a is called a (p,m)-sparse attack if there exists

an index set I ⊂ S , such that:

(i) ‖ai‖ = 0, ∀i ∈ Ic;

(ii) |I| ≤ p.

Define the collection of a possible index set of malicious sensors as

C , {I : I ⊂ S, |I| = p}.

The set of all possible (p,m)-sparse attacks is denoted as

A ,
⋃
I∈C

{a : ‖ai‖ = 0, i ∈ Ic}.

The main task of this work is to investigate the generic sufficient and necessary conditions

for an estimator to be robust to (p,m)-sparse attacks. To this end, we first formally define the

robustness of an estimator.

Definition 2 (Robustness): An estimator g : R(
∑

imi)×n 7→ Rn which maps the measurements

y to a state estimate x̂ is said to be robust to the (p,m)-sparse attack if it satisfies the following

condition:

‖g(z)− g(z + a)‖ ≤ µ(z), ∀a ∈ A, (4)

where µ : R(
∑

imi)×n 7→ R is a real-valued mapping on z.

The robustness implies that the disturbance on the state estimate caused by an arbitrary attack

is bounded. A trivial robust estimator is g(y) = 0 which provides very poor estimate. Therefore,

another desirable property for an estimator is translation invariance, which is defined as follows:
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Definition 3 (Translation invariance): An estimator g is translation invariant if g(z +Hu) =

u+ g(z), ∀u ∈ Rn.

Remark 1: Notice that if an estimator is robust and translation invariant, then

‖g(z)− g(z + a)‖ = ‖x+ g(w)− x+ g(w + a)‖

= ‖g(w)− g(w + a)‖ ≤ µ(w).

Therefore, the maximum bias that can be injected by an adversary is only a function of the noise

w.

In the next subsection, we propose a general convex optimization based estimator which is

translation invariant.

B. A General Estimator

A large variety of estimators are developed by the research community to solve the state

estimation problem. In order to achieve greater generality, we first propose a general convex

optimization based estimator. We then show that many estimators can be rewritten in this general

framework.

The estimator that we study in this paper is assumed to have the following form:

x̂ = g(y) , arg min
x̂

∑
i∈S

fi(yi −Hix̂), (5)

where the following properties of function fi : Rmi 7→ R are assumed:

(i) fi is convex.

(ii) fi is symmetric, i.e., fi(u) = fi(−u).

(iii) fi is non-negative and fi(0) = 0.

Remark 2: It is easy to check that the estimator g is translation invariant. One can view

yi−Hix̂ as the residue for the ith sensor and fi as a cost function. The convex constraints on fi

ensures that the minimization problem can be solved in an efficient (possibly also distributed)

way. The symmetric assumption on fi is typically true for many practically used estimator and

can actually be relaxed. The last assumption implies that the cost achieves minimum value when

the residue is 0.

We now investigate several commonly used estimator and show that they can be written as (5).
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(a) Least Square Estimator:

x̂ = arg min
x̂

‖y −Hx̂‖22 = arg min
x̂

∑
i∈S

‖yi −Hix̂‖22

= (H>H)−1H>y. (6)

(b) Another example is an estimator which minimizes the sum of the l1 norm of the residue,

i.e.,

x̂ = arg min
x̂

∑
i∈S

‖yi −Hix̂‖1 . (7)

In the case that mi = n and Hi = In, ∀i, the estimate is a vector in which the ith entry is

the median over the ith entries of all measurements yi’s.

(c) The following is designed to minimize the sum of the l2 norm of the residue:

x̂ = arg min
x̂

∑
i∈S

‖yi −Hix̂‖2 . (8)

The optimal estimate in the case that mi = n and Hi = In, ∀i is the geometric median of

all yi’s, which is called an L1 estimator in [6]. In other words, x̂ is the point in Rn that

minimizes the sum of Euclidean distances from yi to that point.

(d) Pajic et al. [18] proposed the following robust estimator in the presence of integrity attack:

minimize
x̂,a,w

‖w‖2

subject to y = Hx̂+ w + a, ‖a‖0 ≤ q.

However, the minimization problem involves zero-norm, and thus is difficult to solve in

general. A commonly adopted approach is to use L1 relaxation to approximate zero-norm,

which leads to the following minimization problem:

minimize
x̂,a,w

‖w‖2 + λ‖a‖1 (9)

subject to y = Hx̂+ w + a.

If we define the following function:

d(u) , minimize
ai

‖u− ai‖22 + λ ‖ai‖1 (10)
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Then one can easily prove that the optimization problem (9) can be rewritten as

x̂ = arg min
x̂

∑
i∈I

d(yi −Hix̂). (11)

Apparently, the linear estimator (6) cannot give an estimate with bounded error even when

only one measurement is arbitrarily manipulated. For other estimators, their robustness has been

proved for some special cases. In the next section, we shall present sufficient and necessary

conditions for the robustness of the general estimator (5). Since (7), (8) and (11) are all special

cases of (5), we can easily analyze their individual robustness.

III. ROBUST ANALYSIS FOR A GENERAL ESTIMATOR

This section is devoted to the derivation of necessary and sufficient conditions for the ro-

bustness of the general estimator. Denote the compact set U , {u ∈ Rn : ‖u‖ = 1}. Before

proceeding to the main results, we need the following lemma.

Lemma 1: Let q : R → R be a convex function and q(0) = 0, then q(t)/t is monotonically

non-decreasing on t ∈ R+. Moreover,

q(t+ 1)− q(t) ≥ q(t)/t. (12)

For any 0 < α < 1, we have

q(αt) ≤ αq(t) + q(0) = αq(t).

Divide both side by αt, we can prove that q(t)/t is monotonically non-decreasing. Therefore,

q(t + 1)/(t + 1) ≥ q(t)/t, which implies (12). As a consequence of Lemma 1, we know that

fi(tHiu)/t is monotonically non-decreasing. As a result, there are only two possibilities:

(i) fi(tHiu)/t is bounded for all i and for all u, which implies that the limit limt→∞ fi(tHiu)/t

exists.

(ii) fi(tHiu)/t is unbounded for some i and u.

The next lemma provides several important properties for the case where limt→∞ fi(tHiu)/t

exists, whose proof is reported in the appendix:

Lemma 2: If the following limit is well defined, i.e., finite, for all u ∈ Rn:

lim
t→∞

fi(tHiu)

t
= Ci(u), (13)

then the following statements are true:
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(i) Ci(αu) = |α|Ci(u) and Ci(u1 + u2) ≤ Ci(u1) + Ci(u2).

(ii) Define the function hi(u, v, t) : Rn × Rmi × R 7→ R,

hi(u, v, t) ,
1

t
[fi(v + tHiu)− fi(v)] . (14)

Then the following pointwise limit holds:

lim
t→∞

hi(u, v, t) = Ci(u). (15)

Moreover, the convergence is uniform on any compact set of (u, v).

(iii) For any v and u, we have that

fi(v +Hiu)− fi(v) ≤ Ci(u). (16)

Remark 3: Intuitively speaking, one can interpret fi as a potential field and the derivative of fi

as the force generated by sensor i (if it is differentiable). By (16), we know that the force from

the potential field fi along the u direction cannot exceed Ci(u) (or Ci(u)/‖u‖ to normalize).

On the other hand, Equation (15) implies that this bound is achievable.

We now give the sufficient condition for the robustness of the estimator.

Theorem 1 (Sufficient condition): If the following conditions hold:

1) Ci(u) is well defined for all u ∈ Rn and all i ∈ S;

2) the following inequality holds for all non-zero u:∑
i∈I

Ci(u) <
∑
i∈Ic

Ci(u), ∀I ∈ C, (17)

then the estimator g is robust.

Our goal is to prove that there exists a β(z), such that for any t ≥ β(z), ‖u‖ = 1, a ∈ A, the

following inequality holds:∑
i∈S

fi(yi −Hi × tu) <
∑
i∈S

fi(yi −Hi × (t+ 1)u). (18)

As a result, any point ‖x̂‖ ≥ β(z) + 1 cannot be the solution of the optimization problem since

there exists a better point (‖x̂‖ − 1)x̂/‖x̂‖. Therefore, we must have ‖g(y)‖ ≤ β(z) + 1 and

hence the estimator is robust.

Suppose the set of malicious sensors is I, to prove (18), we will first look at benign sensors.

Due to the uniform convergence of hi(u, v, t) to Ci(u) on U ×{−zi} shown in Lemma 2, given
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any δ > 0 we can always find a finite constant Ni depending on δ and zi such that for all

t ≥ Ni(δ, zi), the following inequality holds:

hi(−zi, u, t) =
1

t
[fi(tHiu− zi)− fi(−zi)] ≥ Ci(u)− δ, (19)

for any ‖u‖ = 1. By (12), we can derive that

fi((t+ 1)Hiu− zi)− fi(tHiu− zi) ≥ Ci(u)− δ. (20)

We define β(z) , max1≤i≤mNi(δ, zi) and fix δ to be

δ =
1

m
min
‖u‖=1

min
I∈C

(∑
i∈Ic

Ci(u)−
∑
i∈I

Ci(u)

)
. (21)

Hence, for i = 1, . . . ,m, if t > βδ(z) we have

fi((t+ 1)Hiu− zi)− fi(tHiu− zi)

≥ Ci(u)− δ, ∀‖u‖ = 1. (22)

Since for good sensors, zi = yi, we know that∑
i∈Ic

[fi((t+ 1)Hiu− zi)− fi(tHiu− zi)]

≥
∑
i∈Ic

Ci(u)− (m− p)δ, ∀‖u‖ = 1. (23)

We now consider malicious sensors. By Lemma 2 (iii), we know that for i ∈ I, and any u∑
i∈I

fi(yi − tHiu)−
∑
i∈I

fi(yi − (t+ 1)Hiu) ≤
∑
i∈I

Ci(−u). (24)

Hence from (21), (24) and (23), we know that∑
i∈S

fi(yi − (t+ 1)Hiu)−
∑
i∈S

fi(yi − tHiu)

≥
∑
i∈Ic

Ci(u)−
∑
i∈I

Ci(u)− (m− p)δ > 0,

which proves (18).

Remark 4: Assuming that yi is a scalar and w = 0, Fawzi et al. [16] prove that the state

can be exactly recovered under the integrity attack if and only if for all u 6= 0, there are at

least 2p + 1 non-zero Hiu. Notice that if for some u 6= 0, there are less than 2p + 1 non-zero

Hiu, then we can choose I to contain the largest p Hiu and thus violate (17). As a result, our
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sufficient condition is stronger than the ones proposed in [16]. The main reason is that we seek

to use convex optimization to solve the state estimation problem, while in [16], a combinatorial

optimization problem is needed to recover the state.

We next give necessary conditions for the robustness of the estimator.

Theorem 2 (Necessary Condition I): If Ci(u) is well defined for all u ∈ Rn and all i ∈ S but

there exist some ‖u0‖ = 1, I0 ∈ C such that∑
i∈I0

Ci(u0) >
∑
i∈Ic0

Ci(u0), (25)

then the estimator is not robust to the attack.

The robustness of the estimator is equivalent to that the optimal estimate x̂ satisfies ‖x̂‖ ≤ µ(z)

for all a ∈ A, where µ is a real-valued function. To this end, we will prove that for any r > 0,

there exists a y such that all x̂ that satisfies ‖x̂‖ ≤ r cannot be the optimal solution of (5).

We will first look at the compromised sensors. For every δ > 0 we can always find a finite

constant Ni(δ) such that for any x̂ ∈ {x̂ : ‖x̂‖ ≤ r} and for all t > Ni, the following inequality

holds:

fi(tHiu0 −Hix̂)− fi(tHiu0 −Hi(x̂+ u0))

fi((t+ 1)Hiu0 −Hi(x̂+ u0))− fi(tHiu0 −Hi(x̂+ u0))

≥hi(u0,−Hi(x̂+ u0), t) ≥ Ci(u0)− δ, ∀i ∈ I0. (26)

The first inequality is derived from (12). The second inequality is due to the uniform convergence

of hi(u, v, t) to Ci(u) on {u0} × {v : v = −Hix+ u0, ‖x‖ ≤ r}.

Let us choose

δ =
1

m

∑
i∈I0

Ci(u0)−
∑
i∈Ic0

Ci(u0)

 ,

and t = maxi∈I0 Ni(δ) and yi = tHiu0 for all i ∈ I0, then we know for any ‖x̂‖ ≤ r,

∑
i∈I0

[fi(yi −Hix̂)− fi(yi −Hi(x̂+ u0))]

≥
∑
i∈I0

Ci(u0)− pδ.
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Now let us look at the benign sensors. By Lemma 2 (iii) we have

fi(zi −Hi(x̂+ u0))− fi(zi −Hix̂)

≤ Ci(u0), ∀i ∈ I\Im0 . (27)

From (26) and (27),

∑
i∈S

fi(yi −Hi(x̂+ u0))−
∑
i∈S

fi(yi −Hix̂)

≤
∑
i∈Ic0

Ci(u0)−
∑
i∈I0

Ci(u0) + pδ < 0.

Thus for such a y satisfying

yi =

 zi, if i ∈ Ic0
tHiu0, if i ∈ I0,

x̂ + u0 is a better estimate than all x̂ satisfying ‖x̂‖ ≤ r. Since r is an arbitrary positive real

number, we can conclude that the estimator is not robust.

Theorem 3 (Necessary Condition II): If there exists u0 ∈ Rn and j ∈ I such that

lim
t→∞

fi(tHiu0)

t
→ +∞, (28)

then the estimator is not robust to the attack.

Before proving Theorem 3, we need the following lemma whose proof is reported in appendix.

Lemma 3: If the condition (28) holds, for any M > 0 and for all v in a compact set V ⊂ Rmi ,

there exists N (depending on M and the set V) such that the following inequality holds:

hj(u0, v, t) > M, ∀v ∈ V (29)

Now we are ready to prove the theorem.

Similar to Theorem 2, we will prove that for any r > 0, there exists a y such that all x̂ that

satisfies ‖x̂‖ ≤ r cannot be the optimal solution of (5).

We first look at any sensor i, where i 6= j. Since a continuous function achieves its supremum

on a compact set, we know that the following supremum is well defined (not infinite)

sup
‖x̂‖≤r

[f(zi −Hi(x̂+ u0))− f(zi −Hix̂)] =Mi,
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which implies that for all ‖x̂‖ ≤ r, we can find M > 0, such that∑
i 6=j

f(zi −Hi(x̂+ u0))−
∑
i 6=j

f(zi −Hix̂) ≤M. (30)

Now let us consider sensor j. Due to Lemma 3, we can find a t, such that for all ‖x̂‖ ≤ r,

the following inequality holds:

hj(u0,−Hj(x̂+ u0), t) > M.

Using Lemma 1, we have

f((t+ 1)Hju0 −Hj(x̂+ u0))− f(tHju0 −Hj(x̂+ u0))

= f(tHju0 −Hjx̂)− f(tHju0 −Hj(x̂+ u0))

≥ hj(u0,−Hj(x̂+ u0), t) > M. (31)

Now consider the following y

yi =

 zi, if i 6= j

tHju0, if i = j,

Combining (30) and (31), we know that for all ‖x̂‖ ≤ r, the following inequality holds∑
i∈S

f(yi −Hi(x̂+ u0))−
∑
i∈S

f(yi −Hix̂) < M −M = 0,

which implies that the optimal solution of (5) cannot be inside the ball {x̂ : ‖x̂‖ ≤ r}. Now

since r > 0 is arbitrary, we know the estimator is not robust. Before continuing on, we would

like to provide some remarks on the main result. First, it is worth noticing that the existence of

a well defined limit of fi(tHiu)/t is crucial for the robustness of g as Theorem 3 suggested.

For example, the least square estimator cannot be robust since fi is in quadratic form. Using

the potential field and force analogies in Remark 3, one can interpret the results presented in

this section as: the estimator g is robust if the force generated by any sensor is bounded and if

the combined force of any collection of p sensors is no greater than the combined force of the

remaining m− p sensors.

Secondly, one can see that the conditions proved in Theorem 1, 2 and 3 are very tight, with

only a trivial gap where the LHS of (25) equals the RHS.

Finally, we want to point out that the condition (17) is non-trivial to check since it requires us

to verify against all possible u. In the next subsection, we consider a special case where each yi
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is a scalar and provide a more conservative but verifiable sufficient condition for the robustness

of the estimator.

IV. SCALAR MEASUREMENT CASE: MORE ANALYSIS

In this section, we specialize our results to the scalar measurement case, i.e., mi = 1, ∀i ∈ S.

Throughout this section, we assume that the following limit is well-defined:

αi , lim
t→∞

fi(t)/t. (32)

It is not difficult to prove that Ci(u) = |αiHiu|. With slight abuse of notation, define Ci , αiHi,

then Ci(u) = |Ciu|. For any index set I = {i1, . . . , il} ⊂ S , define

CI ,


Ci1

...

Cil

 . (33)

From Theorem 1 and Theorem 2, we have the following sufficient and necessary conditions

for robustness of g.

Proposition 1:

(a) If for all possible index set I and all non-zero u ∈ Rn the following inequality holds:

‖CIu‖1 =
∑
i∈I

|Ciu| <
∑
i∈Ic
|Ciu| = ‖CIcu‖1, (34)

then the estimator g is robust.

(b) If there exists an index set I and a u ∈ Rn such that the following inequality holds:

‖CIu‖1 > ‖CIcu‖1, (35)

then the estimator g is not robust.

The main difficulty here is to validate (34) for all non-zero u. In the next theorem, we can

find a more conservative but more practically useful sufficient condition for the robustness, by

eliminating u from (34).

Theorem 4: If for any index set I ⊂ S with cardinality p, the optimal value of the following

optimization problem is strictly less than 1:

minimize
K∈Rn×(m−p)

‖CIK‖1

subject to KCIc = In, (36)
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then the estimator g is robust.

Let K ∈ Rn×(m−p) such that KCIc = In. Denote ξ = CIcu. We have CIu = CIKξ. Therefore,

if for all ξ 6= 0, ‖CIKξ‖1 < ‖ξ‖1, i.e., ‖CIK‖1 < 1, then

‖CIu‖1 < ‖CIcu‖1.

By enumerating all possible I we can conclude the proof.

Notice that (36) is not necessary. Since ξ is in the column space of CIc , ξ may not be able

to take all possible value in Rm−p.

Similarly, we can find a more practically useful version for the necessary condition implied

by Theorem 2. By enumerating all (CI , CIc) and utilizing the following result, we can identify

whether g is robust for a given H or not.

Theorem 5: If there exists an index set I such that the following inequality holds:

‖CIC+
Ic‖1 > (

√
m− p+ 1)/2, (37)

where C+
Ic is the Moore-Penrose pseudo inverse of CIc , then the estimator g is not robust.

The following lemma, whose proof is given in the appendix, is needed for the proof of Theorem

5:

Lemma 4: Let ξ ∈ Rm such that ξ = ξ‖ + ξ⊥, where ξ‖ and ξ⊥ are perpendicular to each

other. Then the following inequality holds:

‖ξ‖‖1 ≤
√
m+ 1

2
‖ξ‖1. (38)

Moreover, the above inequality is achievable when

ξ =


1

0
...

0

 , ξ‖ =
1

2


1 +m−1/2

m−1/2

...

m−1/2

 , ξ⊥ =
1

2


1−m−1/2

−m−1/2
...

−m−1/2

 .

We are now ready to prove Theorem 5: To prove g is not robust, from Proposition 1 we only

need to show there exists a u such that ‖CIu‖1 > ‖CIcu‖1 if (37) holds. Since
∥∥CIC+

Ic
∥∥
1
>

(
√
m− p+ 1)/2, we can find ξ ∈ Rm−p, such that∥∥CIC+

Icξ
∥∥
1
>

√
m− p+ 1

2
‖ξ‖1 .
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Now we can decompose ξ = ξ‖+ ξ⊥, where ξ‖ belongs to the column space of CIc and ξ⊥ is

perpendicular to the column space of CIc . By the property of Moore-Penrose inverse, C+
Icξ⊥ = 0.

Therefore, ∥∥CIC+
Icξ
∥∥
1
=
∥∥CIC+

Icξ‖
∥∥
1
.

On the other hand, since ξ ∈ Rm−p, by Lemma 4, we have
√
m− p+ 1

2
‖ξ‖1 ≥

∥∥ξ‖∥∥1 ,
which implies that ∥∥CIC+

Icξ‖
∥∥
1
>
∥∥ξ‖∥∥1 .

Since ξ‖ belongs to the column space of CIc , there exists a u, such that CIcu = ξ‖. Therefore,

we can find a u, such that

‖CIu‖1 > ‖CIcu‖1 ,

which completes the proof.

V. CONCLUDING REMARKS

We have studied the robust estimation problem where p out of m sensors are under attack. The

malicious measurements can be arbitrarily manipulated and thus a robust estimator which can

give a reliable estimate is needed. Our interest is not to study any concrete estimator in presence

of attacks. Instead, we have considered a general class of estimators which integrate a large

number of important estimators as special cases and given sufficient and necessary conditions

for the robustness of the estimator. Moreover, we have presented more analytical results in the

scalar measurement case to render the sufficient and necessary conditions more ready to use.

Future works include the robustness analysis for the dynamical state estimation problem.

VI. APPENDIX

Proof of Lemma 2:

(i) If α = 0, then clearly Ci(0) = 0. On the other hand, if α 6= 0, from the definition in (13),

we have

Ci(αu) = lim
t→∞

1

t
fi(|α|tHiu)

= |α| lim
t→∞

1

|α| t
fi(|α|tHiu) = |α|Ci(u).
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Due to the scaling property of Ci(u) and the convexity of fi, we have

Ci(u1 + u2) = 2Ci

(
u1 + u2

2

)
≤ Ci(u1) + Ci(u2).

Therefore, we know that Ci is actually a semi-norm on Rn

(ii) Based on the convexity of fi, we obtain

2fi(
tHiu

2
) ≤ fi(v + tHiu) + fi(−v), (39)

fi(tHiu) ≥ 2fi(
2v + tHiu

2
)− f(2v). (40)

Dividing both sides of (39) and (40) by t and taking limit over t, we have

Ci(u) ≤ lim inf
t→∞

1

t
fi(v + tHiu) + lim

t→∞

1

t
fi(−v), (41)

Ci(u) ≥ lim sup
t→∞

2

t
fi(v +

t

2
Hiu)− lim

t→∞

1

t
fi(2v). (42)

Since limt→∞ fi(−v)/t = limt→∞ fi(2v)/t = 0, from (42) and (41) we have the following

pointwise limit

lim
t→∞

hi(u, v, t) = Ci(u).

Notice that for a fixed (u, v), by Lemma 1, h(u, v, t) is monotonically non-decreasing with

respect to t. Furthermore, Ci(u) is continuous since it is a semi-norm. Therefore, by Dini’s

theorem [31], h(u, v, t) converges uniformly to Ci(u) on a compact set of (u, v).

(iii) By Lemma 1, we have

fi(v +Hiu)− fi(v) = fi(Hiu)

≤ lim
t→

fi(tHiu)

t
= Ci(u).

Proof of Lemma 3:

From (28) and (39), it is easy to see that hj(u0, v, t) diverges to infinity for all v, i.e.,

hj(u0, v, t)→ +∞. (43)

Next we will show this divergence is also uniform. Denote Wt , {v : hj(u0, v, t) > M}. Since

hj(u0, v, t) is continuous (fi is continuous due to convexity), each Wt is open. By Lemma 1,
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hj(u0, v, t) is monotonically non-decreasing in t. Therefore, Wt ⊆ Wt′ if t ≤ t′ . Since for each

v there exists t such that hj(u0, v, t) > M from (43),⋃
t≥0

Wt = Rmi .

Therefore, the collection {Wt} is an open cover for the compact subset V . Thus, we can find a

finite cover Wt1 , . . . ,Wtl that covers V , i.e.,

V ⊆ Wt1 ∪Wt2 ∪ · · · ∪Wtl . (44)

Now we can define N = max(t1, . . . , tl). Since Wt is non-decreasing with respect to t, the RHS

of (44) is WN . For any t ≥ N , we have

V ⊆ WN ⊆ Wt,

which combined with the definition of Wt finishes the proof.

Proof of Lemma 4:

Geometrically, ξ‖ can be written as ξ‖ = ξ/2+ r, where r ∈ {r : ‖r‖2 = ‖ξ‖2/2}. As a result,

we have

‖ξ‖‖1 ≤
1

2
‖ξ‖1 + ‖r‖1 ≤

1

2
‖ξ‖1 +

√
m‖r‖2

=
1

2
‖ξ‖1 +

√
m

2
‖ξ‖2 ≤

1

2
‖ξ‖1 +

√
m

2
‖ξ‖1,

The first inequality is due to the triangle inequality of any norm. The second and third inequalities

are due to the fact that for an m dimensional vector ξ,

‖ξ‖2 ≤ ‖ξ‖1 ≤
√
m‖ξ‖2.

Without loss of generality, let us assume that ‖ξ‖1 = 1. The achievability of (38) is easy to

verify.
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