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1 Fault Detection and Identification

1.1 Detection

Consider the following system:

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k). (1)

We assume that (A,C) is observable, B is full column rank. Suppose that u(k)
is the fault signal. We will say that a fault occurs when u(k) 6= 0 for some k.

Define Y = (y(0), y(1), . . . ) and U = (u(0), u(1), . . . ). Clearly, Y is a function
of x(0) and U . Thus, we will write

y = f(x(0),U).

Fact: f is a linear operator.
Question: Can we know whether a fault occurs from y(k)?
There are two cases depending whether we know x(0) or not.
Suppose that x(0) is known. Then the nominal trajectory is given by

Y∗ = f(x(0), 0).

On the other hand, if there exists a U 6= 0, such that

Y∗ = f(x(0),U),

then there is no way for us to know whether there is a fault or not given y∗.
Notice that

Y∗ = f(x(0), 0) = f(x(0),U)⇒ f(0,U) = 0,

which gives the following theorem:

Theorem 1. The following statements are equivalent:

1. The fault is detectable with known initial conditions.
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2. The following implication holds:

f(0,U) = 0 =⇒ U = 0

3. The system is left-invertible, i.e., the mapping from U to Y defined by
Y = f(0,U) is one to one.

If the initial condition is unknown, then the nominal trajectory will be a set
of

Y ∗ = {Y : Y = f(x(0), 0) for some x(0) ∈ Rn}.

By the similar argument, if there exists a U and x(0)′, such that

Y = f(x(0)′,U) ∈ Y ∗,

then there is no way to know whether a fault occurs or not given Y. By linearity
of Y, we know that

Y = f(x(0), 0) = f(x(0)′,U) =⇒ f(x(0)′ − x(0),U) = 0,

which leads to the following theorem:

Theorem 2. The following statements are equivalent:

1. The fault is detectable with unknown initial conditions.

2. The following implication holds:

f(x(0),U) = 0 =⇒ x(0) = 0 and U = 0.

3. The system has no non-trivial zero dynamics (strongly observable), i.e.,

f(x(0),U) = 0 =⇒ x(k) = 0, ∀k.

4. The system does not have an invariant zero, i.e., there does not exists an
z ∈ C, and non-zero x0 ∈ Rn and u0 ∈ Rm, such that

Ax0 + Bu0 = zx0, and Cx0 = 0. (2)

Proof. We will only prove 3 =⇒ 2. Suppose that there exists x(0) and U 6= 0,
such that f(x(0),U) = 0. Let us define the subspace V ∈ Rn as

V , span(x(0), x(1), . . . , ).

V 6= {0}. Since

Ax(k) = x(k + 1)−Bu(k),
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we know that

AV ⊆ V + col(B), (3)

where col(B) is the column space of B. Furthermore,

CV = 0 =⇒ V ⊆ ker(C),

where ker(C) is the null space of C. By (3), we know that there exists an K,
such that

(A + BK)V ⊆ V.

Hence, there exists x0 ∈ V, which is an eigenvector of A+BK with corresponding
eigenvalue z. Define u0 = Kx0, then z, x0, u0 satisfies (2).

Remark 1. The system is called strongly detectable if the following implication
holds:

f(x(0),U) = 0 =⇒ x(k)→ 0.

This implies that even there might exists an undetectable attack, the effect of
the attack on the state is decaying over time. One can prove that a system is
strongly detectable if and only if all the invariant zeros of the system are stable.

1.2 Identification

Consider the following system:

x(k + 1) = Ax(k) +
∑
i∈I

Biui(k), y(k) = Cx(k), (4)

where ui(k) denotes the ith fault and we say it occurs if ui(k) 6= 0 for some k.
We assume that at most one fault occurs and we want to identify which one.

Suppose that x(0) is known, then all possible trajectories generated by the
ith fault can be written as

Yi = {Y : Y = f(x(0), BiUi)},

where BiUi = (Biui(0), Biui(1), . . . ). We claim that we can distinguish the ith
fault and the jth fault if

Y = f(x(0), BiUi) = f(x(0), BjUj) =⇒ Ui = Uj = 0.

Notice that

f(x(0), BiUi) = f(x(0), BjUj)⇔ f

(
0,
[
Bi Bj

] [ Ui
−Uj

])
= 0.

Therefore, the fault is identifiable if and only if for any i 6= j, (A,
[
Bi Bj

]
, C)

is left invertible.
Similarly, with unknown initial conditions, the fault is identifiable if and

only if for any i 6= j, (A,
[
Bi Bj

]
, C) has no invariant zeros.
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2 Generic Detectability

We model a network composed of m agents as a graph G = {V, E}. V =
{1, 2, . . . ,m} is the set of vertices representing the agents. E ⊆ V ×V is the set
of edges. (i, j) ∈ E if and only if j can send information to i. The graph can
be directed.

Define the neighbors Ni of agent i as the set of agents who can send infor-
mation to i, i.e.,

Ni , {j : (i, j) ∈ E, j 6= i}.

Suppose each agent has a state xi(t). The agent update the state based on
the following update equation:

xi(k + 1) = aiixi(k) +
∑
j∈Ni

aijxj(k) + ui(k),

where ui(k) is a malicious input. A node is benign if ui(k) = 0 for all k. It is
malicious if ui(k) 6= 0 for some k.

We can write the above equation in matrix form as:

x(k + 1) = Ax(k) + Bu(k),

where B =
[
ei1 , . . . , eif

]
, where {i1, . . . , if} are the set of malicious node. Fur-

thermore, for node i, we can define

Ci =

ei1...
eil

 ,

where Ni

⋃
{i} = {i1, . . . , il}. As a result, for a benign node i, it observes

y(k) = Cix(k).

One can see that there is a straight forward connection between the topology
of the network and the graph associated with linear structured system (A,B,Ci)

Theorem 3. (Assuming unknown initial condition:) If the graph G has con-
nectivity k > f , and i be a benign node. Then for almost any A,B matrices,
node i can detect the existence of a malicious behavior. On the other hand, if
k ≤ f , then there exists a set of malicious node {i1, . . . , if}, such that no node
can detect the malicious behavior for any A,B.
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