Secure Control: Intrusion Detection and Identification

Yilin Mo

July 2, 2015

1 Fault Detection and Identification

1.1 Detection

Consider the following system:

$$
\begin{equation*}
x(k+1)=A x(k)+B u(k), y(k)=C x(k) . \tag{1}
\end{equation*}
$$

We assume that (A, C) is observable, B is full column rank. Suppose that $u(k)$ is the fault signal. We will say that a fault occurs when $u(k) \neq 0$ for some k.

Define $\mathcal{Y}=(y(0), y(1), \ldots)$ and $\mathcal{U}=(u(0), u(1), \ldots)$. Clearly, \mathcal{Y} is a function of $x(0)$ and \mathcal{U}. Thus, we will write

$$
y=f(x(0), \mathcal{U})
$$

Fact: f is a linear operator.
Question: Can we know whether a fault occurs from $y(k)$?
There are two cases depending whether we know $x(0)$ or not.
Suppose that $x(0)$ is known. Then the nominal trajectory is given by

$$
\mathcal{Y}^{*}=f(x(0), 0)
$$

On the other hand, if there exists a $\mathcal{U} \neq 0$, such that

$$
\mathcal{Y}^{*}=f(x(0), \mathcal{U}),
$$

then there is no way for us to know whether there is a fault or not given y^{*}. Notice that

$$
\mathcal{Y}^{*}=f(x(0), 0)=f(x(0), \mathcal{U}) \Rightarrow f(0, \mathcal{U})=0
$$

which gives the following theorem:
Theorem 1. The following statements are equivalent:

1. The fault is detectable with known initial conditions.
2. The following implication holds:

$$
f(0, \mathcal{U})=0 \Longrightarrow \mathcal{U}=0
$$

3. The system is left-invertible, i.e., the mapping from \mathcal{U} to \mathcal{Y} defined by $\mathcal{Y}=f(0, \mathcal{U})$ is one to one.

If the initial condition is unknown, then the nominal trajectory will be a set of

$$
Y^{*}=\left\{\mathcal{Y}: \mathcal{Y}=f(x(0), 0) \text { for some } x(0) \in \mathbb{R}^{n}\right\}
$$

By the similar argument, if there exists a \mathcal{U} and $x(0)^{\prime}$, such that

$$
\mathcal{Y}=f\left(x(0)^{\prime}, \mathcal{U}\right) \in Y^{*}
$$

then there is no way to know whether a fault occurs or not given \mathcal{Y}. By linearity of \mathcal{Y}, we know that

$$
\mathcal{Y}=f(x(0), 0)=f\left(x(0)^{\prime}, \mathcal{U}\right) \Longrightarrow f\left(x(0)^{\prime}-x(0), \mathcal{U}\right)=0
$$

which leads to the following theorem:
Theorem 2. The following statements are equivalent:

1. The fault is detectable with unknown initial conditions.
2. The following implication holds:

$$
f(x(0), \mathcal{U})=0 \Longrightarrow x(0)=0 \text { and } \mathcal{U}=0
$$

3. The system has no non-trivial zero dynamics (strongly observable), i.e.,

$$
f(x(0), \mathcal{U})=0 \Longrightarrow x(k)=0, \forall k .
$$

4. The system does not have an invariant zero, i.e., there does not exists an $z \in \mathbb{C}$, and non-zero $x_{0} \in \mathbb{R}^{n}$ and $u_{0} \in \mathbb{R}^{m}$, such that

$$
\begin{equation*}
A x_{0}+B u_{0}=z x_{0}, \text { and } C x_{0}=0 \tag{2}
\end{equation*}
$$

Proof. We will only prove $3 \Longrightarrow 2$. Suppose that there exists $x(0)$ and $\mathcal{U} \neq 0$, such that $f(x(0), \mathcal{U})=0$. Let us define the subspace $\mathcal{V} \in \mathbb{R}^{n}$ as

$$
\mathcal{V} \triangleq \operatorname{span}(x(0), x(1), \ldots,)
$$

$\mathcal{V} \neq\{0\}$. Since

$$
A x(k)=x(k+1)-B u(k)
$$

we know that

$$
\begin{equation*}
A \mathcal{V} \subseteq \mathcal{V}+\operatorname{col}(B) \tag{3}
\end{equation*}
$$

where $\operatorname{col}(B)$ is the column space of B. Furthermore,

$$
C \mathcal{V}=0 \Longrightarrow \mathcal{V} \subseteq \operatorname{ker}(C)
$$

where $\operatorname{ker}(C)$ is the null space of C. By (3), we know that there exists an K, such that

$$
(A+B K) \mathcal{V} \subseteq \mathcal{V}
$$

Hence, there exists $x_{0} \in \mathcal{V}$, which is an eigenvector of $A+B K$ with corresponding eigenvalue z. Define $u_{0}=K x_{0}$, then z, x_{0}, u_{0} satisfies (2).

Remark 1. The system is called strongly detectable if the following implication holds:

$$
f(x(0), \mathcal{U})=0 \Longrightarrow x(k) \rightarrow 0
$$

This implies that even there might exists an undetectable attack, the effect of the attack on the state is decaying over time. One can prove that a system is strongly detectable if and only if all the invariant zeros of the system are stable.

1.2 Identification

Consider the following system:

$$
\begin{equation*}
x(k+1)=A x(k)+\sum_{i \in \mathcal{I}} B_{i} u_{i}(k), y(k)=C x(k) \tag{4}
\end{equation*}
$$

where $u_{i}(k)$ denotes the i th fault and we say it occurs if $u_{i}(k) \neq 0$ for some k. We assume that at most one fault occurs and we want to identify which one.

Suppose that $x(0)$ is known, then all possible trajectories generated by the i th fault can be written as

$$
Y_{i}=\left\{\mathcal{Y}: \mathcal{Y}=f\left(x(0), B_{i} \mathcal{U}_{i}\right)\right\}
$$

where $B_{i} \mathcal{U}_{i}=\left(B_{i} u_{i}(0), B_{i} u_{i}(1), \ldots\right)$. We claim that we can distinguish the i th fault and the j th fault if

$$
\mathcal{Y}=f\left(x(0), B_{i} \mathcal{U}_{i}\right)=f\left(x(0), B_{j} \mathcal{U}_{j}\right) \Longrightarrow \mathcal{U}_{i}=\mathcal{U}_{j}=0
$$

Notice that

$$
f\left(x(0), B_{i} \mathcal{U}_{i}\right)=f\left(x(0), B_{j} \mathcal{U}_{j}\right) \Leftrightarrow f\left(0,\left[\begin{array}{ll}
B_{i} & B_{j}
\end{array}\right]\left[\begin{array}{c}
\mathcal{U}_{i} \\
-\mathcal{U}_{j}
\end{array}\right]\right)=0
$$

Therefore, the fault is identifiable if and only if for any $i \neq j,\left(\begin{array}{ll}\left.A,\left[\begin{array}{ll}B_{i} & B_{j}\end{array}\right], C\right)\end{array}\right.$ is left invertible.

Similarly, with unknown initial conditions, the fault is identifiable if and only if for any $i \neq j,\left(A,\left[\begin{array}{ll}B_{i} & B_{j}\end{array}\right], C\right)$ has no invariant zeros.

2 Generic Detectability

We model a network composed of m agents as a graph $G=\{V, E\} . V=$ $\{1,2, \ldots, m\}$ is the set of vertices representing the agents. $E \subseteq V \times V$ is the set of edges. $(i, j) \in E$ if and only if j can send information to i. The graph can be directed.

Define the neighbors \mathcal{N}_{i} of agent i as the set of agents who can send information to i, i.e.,

$$
\mathcal{N}_{i} \triangleq\{j:(i, j) \in E, j \neq i\}
$$

Suppose each agent has a state $x_{i}(t)$. The agent update the state based on the following update equation:

$$
x_{i}(k+1)=a_{i i} x_{i}(k)+\sum_{j \in \mathcal{N}_{i}} a_{i j} x_{j}(k)+u_{i}(k)
$$

where $u_{i}(k)$ is a malicious input. A node is benign if $u_{i}(k)=0$ for all k. It is malicious if $u_{i}(k) \neq 0$ for some k.

We can write the above equation in matrix form as:

$$
x(k+1)=A x(k)+B u(k)
$$

where $B=\left[e_{i_{1}}, \ldots, e_{i_{f}}\right]$, where $\left\{i_{1}, \ldots, i_{f}\right\}$ are the set of malicious node. Furthermore, for node i, we can define

$$
C_{i}=\left[\begin{array}{c}
e_{i_{1}} \\
\vdots \\
e_{i_{l}}
\end{array}\right]
$$

where $\mathcal{N}_{i} \bigcup\{i\}=\left\{i_{1}, \ldots, i_{l}\right\}$. As a result, for a benign node i, it observes

$$
y(k)=C_{i} x(k)
$$

One can see that there is a straight forward connection between the topology of the network and the graph associated with linear structured system $\left(A, B, C_{i}\right)$

Theorem 3. (Assuming unknown initial condition:) If the graph G has connectivity $k>f$, and i be a benign node. Then for almost any A, B matrices, node i can detect the existence of a malicious behavior. On the other hand, if $k \leq f$, then there exists a set of malicious node $\left\{i_{1}, \ldots, i_{f}\right\}$, such that no node can detect the malicious behavior for any A, B.

