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Consider the space of n by n matrix Rn×n. We can define the canonical
basis Ei,j as an all zero matrix except the ith row and jth column to be one.

Let us consider a subspace U ⊆ Rn×n, such that U = span(Ei1,j1 , . . . , Eil,jl).
We know that any matrix X ∈ U can be written as

X =

l∑
k=1

λkEik,jk .

Hence, there is a one to one correspondence between X and Rl.
We will call U a “structured matrix”.
Define

det(Λ) =

∣∣∣∣∣
l∑

k=1

λkEik,jk

∣∣∣∣∣
Theorem 1. Let U be a “structured matrix”. Define the set

S = {Λ ∈ Rl : det(Λ) = 0}

Then one of the following statements hold:

• S = Rl.

• S is nowhere dense in Rl and has Lebesgue measure 0. Rl\S is open.

Proof. Suppose that there exists Λ∗, such that

det (Λ∗) 6= 0.

For any Λ, consider the following function:

f(t) = det [(1− t)Λ + tΛ∗] .

We know that f(t) is at most an nth-polynomial of t and f(0) = det (Λ) and
f(1) = det(Λ∗) 6= 0.

Therefore, f 6= 0 and there is at most n roots for f(t). Hence, for any r > 0,
there exists a |t| < r, such that f(t) 6= 0.

Notice that det(Λ) is continuous with respect to Λ. Hence, Rl\S = det−1((−∞, 0)
⋃

(0,∞))
is open. Thus, S is closed and has no interior. Thus, S is nowhere dense.

In fact, S is a proper algebraic variety. The 0 Lebesgue measure of S can be
proved using the properties of algebraic variety.
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The above theorem essentially implies that a zero-one phenomenon regarding
invertibility:

• Either all matrices in U are not invertible;

• or almost all matrices in U are invertible.

Consider the set of stable matrices in U , one can easily prove that in fact
some matrices in U are stable, some are not. (assuming that U is non-trivial).

Hence, invertibility only depends on the structure of U (generic properties),
while stability depends on the exact parameterization.

For any “structured matrix” U , we can define the graph associated with U
as G(U) = (V,E), where V = {1, . . . , n} and (i, j) ∈ E if and only if Ei,j ∈ U .
The graph there is a one-to-one correspondence between G(U) and U . Hence,
any generic properties can be derived from G(U).

Let us define a simple path as a path without repetitions of vertices or edges.
Two paths are disjoint if they do not share any common vertex. A family of
paths are disjoint if and only any two paths are disjoint.

Similarly, we can define simple cycle and disjoint cycles. In the remaining
lecture, we will only consider simple paths and simple cycles.

Theorem 2. A structured matrix U is generically invertible if and only if there
exists a family of disjoint cycles in G(U) that covers all vertices V .

Proof. If U is generically invertible, then there exists anX ∈ U that is invertible.
Let σ = (σ1, . . . , σn) be a permutation of (1, . . . , n), we know that

det(X) =
∑
σ

sgn(σ)

n∏
i=1

Xi,σi
6= 0

Hence, there exists at least one σ, such that Xi,σi
6= 0 for all i = 1, . . . , n.

We claim that the edge set (i, σi) forms a family of disjoint cycles that covers
V .

On the other hand, if the edge set {(ik, jk)}, k = 1, . . . , n forms a family of
disjoint cycles that covers V , then we can define

Xij =

{
1 if (i, j) = (ik, jk) for some k

0 otherwise

We claim that det(X) = 1 or −1. Hence, U must be generically invertible.

Alternatively, we can construct a bipartite graph G′(U) = (V ′, E′), where
V ′ = {i1, . . . , in, o1, . . . , on}, such that

(ia, ob) ∈ E′ ⇔ Ea,b ∈ U.

A matching of a graph is defined as a family of disjoint edges. U is generically
invertible if and only if there exists a matching with size n.

We can generalize the graph G′(U) to non-square matrices. The generic rank
of U is given by the size of the maximum matching.
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1 Structured Linear System

Consider the following linear system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k),

where A,B,C,D are all structured matrices. x(k) ∈ Rn, y(k) ∈ Rm and u(k) ∈
Rp. We can define the graph G(A,B,C,D) = (V,E) of the system as

• V = {u1, . . . , up, x1, . . . , xn, y1, . . . , ym}.

• (xi, xj) ∈ E if and only if Ai,j is a free parameter.

• (xi, uj) ∈ E if and only if Bi,j is a free parameter.

• (yi, xj) ∈ E if and only if Ci,j is a free parameter.

• (yi, uj) ∈ E if and only if Di,j is a free parameter.

Any generic properties of the system can be derived from the graphG(A,B,C,D).
Controllability(Observability) is a generic property, since we are checking

the invertibility of
B =

[
B AB . . . An−1B

]
.

Every entries in B is a polynomial of parameters. Hence, the determinant of
a submatrix is also a polynomial of parameters. By the same argument as the
square matrix case, we know that the invertibility of B is a generic property.

Theorem 3. If one of the following conditions holds:

1. rank
[
A B

]
< n,

2. There exists a permutation matrix P , such that

PAP−1 =

[
A11 0
A21 A22

]
, PB =

[
0
B2

]
,

then (A,B) is not observable.

Proof. If
[
A B

]
is not full rank, then there exists v 6= 0, such that

vTA = vTB = 0,

which implies that vTAkB = 0. Hence, B is not full rank.
On the other hand, if the second conditions hold, then we can choose v =[

1
0

]
, then vTAk =

[
1TA11 0

]
. Thus, vTAkB = 0, for all k and B is not full

rank.

Theorem 4. The generic rank of
[
A B

]
= n if and only if there exists a

disjoint family of
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1. cycles,

2. paths that start from some uj,

which covers the vertices x1, . . . , xn.

Theorem 5. Condition 2 holds if and only if there exists an vertex xi that
cannot be reached from any uj.

Thus we know that

Theorem 6. (A,B) is generically controllable implies that

1. every vertex xi can be reached from some uj,

2. and all vertices x1, . . . , xn are covered by a disjoint family of cycles and
paths that starts from some uj.

We can prove that the converse in Theorem 6 is also true.
Examples:

1.

A =

a11 a12 0
a21 a22 0
a31 a32 a33

 , B =

 0
0
b31


Not controllable since x1, x2 are not connected to u1.

2.

A =

0 a12 0
0 a22 0
0 a32 0

 , B =

b11b21
b31


Not controllable since we cannot cover x1, x3 simultaneously with dis-
jointed paths.

3.

A =


0 a12 0 . . . 0
0 0 a23 . . . 0
...

...
...

. . .
...

0 0 0 . . . an−1,n
0 0 0 . . . 0

 , B =

 0
...
bn1


Generically controllable. The corresponding graph is called a “stem”.

4.

A =


0 a12 0 . . . 0
0 0 a23 . . . 0
...

...
...

. . .
...

0 0 0 . . . an−1,n
an1 0 0 . . . 0

 , B =

 0
...
bn1


Generically controllable. The corresponding graph is called a “bud”.
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