Non-negative Matrices and Distributed Control

Yilin Mo

July 2, 2015

We model a network composed of m agents as a graph $G=\{V, E\} . V=$ $\{1,2, \ldots, m\}$ is the set of vertices representing the agents. $E \subseteq V \times V$ is the set of edges. $(i, j) \in E$ if and only if j can send information to i. The graph can be directed.

Define the neighbors \mathcal{N}_{i} of agent i as the set of agents who can send information to i, i.e.,

$$
\mathcal{N}_{i} \triangleq\{j:(i, j) \in E, j \neq i\}
$$

Suppose each agent has a state $x_{i}(t)$. The agent update the state based on the following update equation:

- Continuous time:

$$
\frac{d}{d t} x_{i}(t)=a_{i i} x_{i}(t)+\sum_{j \in \mathcal{N}_{i}} a_{i j} x_{j}(t)
$$

- Discrete time:

$$
x_{i}(t+1)=a_{i i} x_{i}(t)+\sum_{j \in \mathcal{N}_{i}} a_{i j} x_{j}(t)
$$

We can write everything in matrix form:

- Continuous time:

$$
\frac{d}{d t} x(t)=A x(t)
$$

- Discrete time:

$$
x(t+1)=A x(t)
$$

Question: is the system stable? Can we know the answer in a distributed fashion?

1 Some Definitions

Let $\mathbb{R}_{+}^{n \times m}$ and $\mathbb{R}_{++}^{n \times m}$ be convex cones defined as

$$
\begin{aligned}
& \mathbb{R}_{+}^{n \times m} \triangleq\left\{M \in \mathbb{R}^{n \times m}: M_{i j} \geq 0, \forall i, j\right\} \\
& \mathbb{R}_{++}^{n \times m} \triangleq\left\{M \in \mathbb{R}^{n \times m}: M_{i j}>0, \forall i, j\right\}
\end{aligned}
$$

Hence, we can define

$$
\begin{aligned}
& X \geq Y \Leftrightarrow X-Y \in \mathbb{R}_{+}^{n \times m} \\
& X>Y \Leftrightarrow X-Y \in \mathbb{R}_{++}^{n \times m}
\end{aligned}
$$

Moreover, we define $Q \triangleq \mathbb{R}_{+}^{n} \backslash\{0\}$.
A matrix A is called positive if $A>0$. It is called non-negative if $A \geq 0$. It is called a Metzler matrix if all the off-diagonal entries are non-negative, i.e., $A=B-s I$, where B is non-negative.

Some observations:

- If $A \geq 0$ and $x \geq 0$, then $A x \geq 0$.
- On the contrary, if for all $x \geq 0$ and $A x \geq 0$, then $A \geq 0$.
- Similarly, if $A>0$ and $x \in Q$, then $A x>0$.
- On the contrary, if for all $x \in Q$ and $A x>0$, then $A>0$.
- If A is Metzler, then $\exp (A t)$ is non-negative.

A matrix A is called Hurwitz if all its eigenvalues have strictly negative real part. A is called stable if all its eigenvalues satisfy $|\lambda|<1$.

A non-negative matrix is called primitive if there exists an k, such that A^{k} is positive.

A non-negative matrix is called irreducible if for any i, j, there exists an k, such that $\left(A^{k}\right)_{i j}$ is positive.

In general, a matrix A is called irreducible if $|A|$ is irreducible.
Define $G(A)=(V, E)$ aw the graph associated with A, where $V=\{1, \ldots, n\}$ and $(i, j) \in E$ if and only if $a_{i j} \neq 0$.

Let the period of a vertex i to be the greatest common divisor of the lengths of all cycles starting from i.

Some observations:

- If A is irreducible then $A+I$ is primitive.
- $\left(A^{k}\right)_{i j}>0$ if and only if there exists a path of length k from j to i.
- A is irreducible is equivalent to $G(A)$ to be strongly connected.
- If $G(A)$ is strongly connected, then all the vertices have the same period.
- A is primitive if A is irreducible and $G(A)$ has period 1 (aperiodic).

2 Important Properties of Non-negative matrices and Metzler matrices

Theorem 1 (Perron Frobenius Theorem). Let A be an irreducible matrix, then the following propositions hold:

1. Let the spectral radius of A to be $\rho(A)$, then there exists an eigenvalue λ of A, such that $\lambda=\rho(A)$.
2. λ has geometric and algebraic multiplicity of 1 .
3. The left and right eigenvectors of λ is strictly positive. Any other eigenvector has negative entries.
4. If A is primitive, then all the other eigenvalues satisfy $|\lambda|<\rho(A)$.
5. $\rho(A)$ satisfies:

$$
\min _{i} \sum_{j} a_{i j} \leq \rho(A) \leq \max _{i} \sum_{i} a_{i j}
$$

Proof. First let us define the following function $L: Q \rightarrow \mathbb{R}_{+}$:

$$
L(x) \triangleq \max \{s: s x \leq A x\}
$$

Clearly $L(\alpha x)=L(x)$ for any $\alpha>0$. Define $P=(I+A)^{k}$, where k is large enough such that P is positive. Hence, if $s x \leq A x$,

$$
P(s x) \leq P A x=A P x
$$

which implies that

$$
L(P x) \geq L(x)
$$

Furthermore, if $L(x) x \neq A x$, then $L(P x)>L(x)$.
Now define:

$$
\lambda \triangleq \max \left\{L(x):\|x\|_{2}=1, x \in Q\right\}
$$

Suppose λ is achieve at v. Then $\lambda v=A v$. (otherwise $L(P v) \geq L(v)$.) Hence, λ is an eigenvalue of A with a positive eigenvector v.

Applying the same procedure to A^{T}, since the spectral radius of A is the same as A^{T}, we can find a strictly positive left eigenvector of A. Let us denote it as w.

Now let $\mu \neq \lambda$ be an eigenvalue of A with eigenvector y. Then

$$
w^{T} A y=\lambda w^{T} y=\mu w^{T} y
$$

Hence, $w^{T} y=0$, which implies that y must have negative entries. Furthermore,

$$
|\mu||y|=|A y| \leq A|y|
$$

Hence, $|\mu| \leq L(|y|) \leq \lambda$, which finishes the proof of item 1.
To prove item 2, one can consider

$$
\left.\frac{d}{d \lambda} \operatorname{det}(\lambda I-A)\right|_{\lambda=\rho(A)},
$$

and prove that it is strictly positive. The detail is omitted. Please check the reference.

If A is primitive, then A^{k} is positive. Clearly the eigenvalues of A^{k} is the k-th power of the eigenvalues of A. Hence, without loss of generality, we can assume that A is positive and $\rho(A)=1$ to prove item 4 . Let y be an eigenvalue of A with corresponding eigenvalue μ, where $|\mu|=1$, then

$$
z=A|y|-|y| \geq 0
$$

Suppose that $z \neq 0$, then

$$
A z>0
$$

which implies that there exists an $\varepsilon>0$, such that

$$
A z \geq \varepsilon A|y|
$$

which is equivalent to

$$
\frac{A}{1+\varepsilon} A|z| \geq A|z|
$$

Thus, for all k,

$$
\left(\frac{A}{1+\varepsilon}\right)^{k} A|z| \geq A|z|
$$

which contradicts with the fact that $\rho(A)=1$. As a result, $z=0$. Thus,

$$
|y|=A|y|, \quad \text { and } y=A y
$$

Hence, y is either all non-negative or all non-positive, which implies that y is just a scalar multiplication of v.

Now to prove item 5 we have

$$
L(\mathbf{1})=\min _{i} \sum_{j} a_{i j} \leq \lambda,
$$

and

$$
A 1 \leq\left(\max _{i} \sum_{j} a_{i j}\right) 1
$$

Hence,

$$
w^{T} A \mathbf{1}=\lambda w^{T} \mathbf{1} \leq\left(\max _{i} \sum_{j} a_{i j}\right) w^{T} \mathbf{1}
$$

which implies that $\lambda \leq \max _{i} \sum_{j} a_{i j}$.
For a general A matrix, to prove it is stable, we need to consider a Lyapunov function of the following form:

$$
V(x)=x^{T} P x
$$

where P is positive definite and $A^{T} P A-P$ is negative definite. Since there is no guarantee that P is diagonal (or comply with the network topology), this criterion cannot be easily distributed.

However if A is non-negative and irreducible, then we have

Theorem 2. If A is non-negative and irreducible, then A is stable if and only if there exists a positive $w \in \mathbb{R}^{n}$ and $0<\delta<1$, such that

$$
\begin{equation*}
w^{T} A<\delta w^{T} \tag{1}
\end{equation*}
$$

The corresponding Lyapunov function is given by

$$
V(z)=w^{T}|z|
$$

Proof. "if": (1) is equivalent to

$$
V(A z)<\delta V(z)
$$

"only if": If A is stable, then we can choose w as the left eigenvector associated with $\lambda=\rho(A)$.

We can generalize this result to continuous time and consider Metzler matrix. Assuming that A is a Metzler matrix with $A=B-s I$, where B is irreducible. Hence, A is Hurwitz if and only if $\rho(B)<s$, which is equivalent to the existence of a positive w, such that

$$
w^{T} B<s w^{T} \Leftrightarrow w^{T} A<0 .
$$

To see this, let v be the right eigenvector associated with $\rho(B)$, then

$$
w^{T} B v=\rho(B) w^{T} v<s w^{T} v
$$

which implies that $\rho(B)<s$. Thus, we have the following theorem:
Theorem 3. If A is Meltzer and irreducible, then A is Hurwitz if and only if there exists a positive $w \in \mathbb{R}^{n}$, such that

$$
\begin{equation*}
w^{T} A<0 \tag{2}
\end{equation*}
$$

The corresponding Lyapunov function is given by

$$
V(z)=w^{T}|z|
$$

Eq (1) and (2) can be verified in a distributed fashion.

