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We model a network composed of m agents as a graph G = {V, E}. V =
{1, 2, . . . ,m} is the set of vertices representing the agents. E ⊆ V ×V is the set
of edges. (i, j) ∈ E if and only if j can send information to i. The graph can
be directed.

Define the neighbors Ni of agent i as the set of agents who can send infor-
mation to i, i.e.,

Ni , {j : (i, j) ∈ E, j 6= i}.
Suppose each agent has a state xi(t). The agent update the state based on

the following update equation:

• Continuous time:

d

dt
xi(t) = aiixi(t) +

∑
j∈Ni

aijxj(t).

• Discrete time:
xi(t+ 1) = aiixi(t) +

∑
j∈Ni

aijxj(t).

We can write everything in matrix form:

• Continuous time:
d

dt
x(t) = Ax(t).

• Discrete time:
x(t+ 1) = Ax(t).

Question: is the system stable? Can we know the answer in a distributed
fashion?

1 Some Definitions

Let Rn×m+ and Rn×m++ be convex cones defined as

Rn×m+ , {M ∈ Rn×m : Mij ≥ 0,∀i, j}
Rn×m++ , {M ∈ Rn×m : Mij > 0,∀i, j}
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Hence, we can define

X ≥ Y ⇔ X − Y ∈ Rn×m+ ,

X > Y ⇔ X − Y ∈ Rn×m++

Moreover, we define Q , Rn+\{0}.
A matrix A is called positive if A > 0. It is called non-negative if A ≥ 0.

It is called a Metzler matrix if all the off-diagonal entries are non-negative, i.e.,
A = B − sI, where B is non-negative.

Some observations:

• If A ≥ 0 and x ≥ 0, then Ax ≥ 0.

• On the contrary, if for all x ≥ 0 and Ax ≥ 0, then A ≥ 0.

• Similarly, if A > 0 and x ∈ Q, then Ax > 0.

• On the contrary, if for all x ∈ Q and Ax > 0, then A > 0.

• If A is Metzler, then exp(At) is non-negative.

A matrix A is called Hurwitz if all its eigenvalues have strictly negative real
part. A is called stable if all its eigenvalues satisfy |λ| < 1.

A non-negative matrix is called primitive if there exists an k, such that Ak

is positive.
A non-negative matrix is called irreducible if for any i, j, there exists an k,

such that
(
Ak
)
ij

is positive.

In general, a matrix A is called irreducible if |A| is irreducible.
Define G(A) = (V,E) aw the graph associated with A, where V = {1, . . . , n}

and (i, j) ∈ E if and only if aij 6= 0.
Let the period of a vertex i to be the greatest common divisor of the lengths

of all cycles starting from i.
Some observations:

• If A is irreducible then A+ I is primitive.

• (Ak)ij > 0 if and only if there exists a path of length k from j to i.

• A is irreducible is equivalent to G(A) to be strongly connected.

• If G(A) is strongly connected, then all the vertices have the same period.

• A is primitive if A is irreducible and G(A) has period 1 (aperiodic).

2 Important Properties of Non-negative matri-
ces and Metzler matrices

Theorem 1 (Perron Frobenius Theorem). Let A be an irreducible matrix, then
the following propositions hold:
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1. Let the spectral radius of A to be ρ(A), then there exists an eigenvalue λ
of A, such that λ = ρ(A).

2. λ has geometric and algebraic multiplicity of 1.

3. The left and right eigenvectors of λ is strictly positive. Any other eigen-
vector has negative entries.

4. If A is primitive, then all the other eigenvalues satisfy |λ| < ρ(A).

5. ρ(A) satisfies:

min
i

∑
j

aij ≤ ρ(A) ≤ max
i

∑
i

aij .

Proof. First let us define the following function L : Q→ R+:

L(x) , max{s : sx ≤ Ax}.

Clearly L(αx) = L(x) for any α > 0. Define P = (I +A)k, where k is large
enough such that P is positive. Hence, if sx ≤ Ax,

P (sx) ≤ PAx = APx,

which implies that
L(Px) ≥ L(x).

Furthermore, if L(x)x 6= Ax, then L(Px) > L(x).
Now define:

λ , max{L(x) : ‖x‖2 = 1, x ∈ Q}.

Suppose λ is achieve at v. Then λv = Av. (otherwise L(Pv) ≥ L(v).)
Hence, λ is an eigenvalue of A with a positive eigenvector v.

Applying the same procedure to AT , since the spectral radius of A is the
same as AT , we can find a strictly positive left eigenvector of A. Let us denote
it as w.

Now let µ 6= λ be an eigenvalue of A with eigenvector y. Then

wTAy = λwT y = µwT y.

Hence, wT y = 0, which implies that y must have negative entries. Furthermore,

|µ||y| = |Ay| ≤ A|y|.

Hence, |µ| ≤ L(|y|) ≤ λ, which finishes the proof of item 1.
To prove item 2, one can consider

d

dλ
det(λI −A)

∣∣∣∣
λ=ρ(A)

,

and prove that it is strictly positive. The detail is omitted. Please check the
reference.
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If A is primitive, then Ak is positive. Clearly the eigenvalues of Ak is the
k-th power of the eigenvalues of A. Hence, without loss of generality, we can
assume that A is positive and ρ(A) = 1 to prove item 4. Let y be an eigenvalue
of A with corresponding eigenvalue µ, where |µ| = 1, then

z = A|y| − |y| ≥ 0.

Suppose that z 6= 0, then
Az > 0,

which implies that there exists an ε > 0, such that

Az ≥ εA|y|,

which is equivalent to
A

1 + ε
A|z| ≥ A|z|.

Thus, for all k, (
A

1 + ε

)k
A|z| ≥ A|z|,

which contradicts with the fact that ρ(A) = 1. As a result, z = 0. Thus,

|y| = A|y|, and y = Ay.

Hence, y is either all non-negative or all non-positive, which implies that y is
just a scalar multiplication of v.

Now to prove item 5 we have

L(1) = min
i

∑
j

aij ≤ λ,

and

A1 ≤

max
i

∑
j

aij

1.

Hence,

wTA1 = λwT1 ≤

max
i

∑
j

aij

wT1,

which implies that λ ≤ maxi
∑
j aij .

For a general A matrix, to prove it is stable, we need to consider a Lyapunov
function of the following form:

V (x) = xTPx,

where P is positive definite and ATPA − P is negative definite. Since there is
no guarantee that P is diagonal (or comply with the network topology), this
criterion cannot be easily distributed.

However if A is non-negative and irreducible, then we have
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Theorem 2. If A is non-negative and irreducible, then A is stable if and only
if there exists a positive w ∈ Rn and 0 < δ < 1, such that

wTA < δwT . (1)

The corresponding Lyapunov function is given by

V (z) = wT |z|.

Proof. “if”: (1) is equivalent to

V (Az) < δV (z).

“only if”: If A is stable, then we can choose w as the left eigenvector associated
with λ = ρ(A).

We can generalize this result to continuous time and consider Metzler matrix.
Assuming that A is a Metzler matrix with A = B − sI, where B is irreducible.
Hence, A is Hurwitz if and only if ρ(B) < s, which is equivalent to the existence
of a positive w, such that

wTB < swT ⇔ wTA < 0.

To see this, let v be the right eigenvector associated with ρ(B), then

wTBv = ρ(B)wT v < swT v,

which implies that ρ(B) < s. Thus, we have the following theorem:

Theorem 3. If A is Meltzer and irreducible, then A is Hurwitz if and only if
there exists a positive w ∈ Rn, such that

wTA < 0. (2)

The corresponding Lyapunov function is given by

V (z) = wT |z|.

Eq (1) and (2) can be verified in a distributed fashion.

5


