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We model a network composed of n agents as a graph G = {V, E}. V =
{1, 2, . . . , n} is the set of vertices representing the agents. E ⊆ V × V is the set
of edges. (i, j) ∈ E if and only if sensor i and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i, j) ∈ E if and
only if (j, i) ∈ E. We further assume that there is no self loop, i.e., (i, i) /∈ E.

At each time, each sensor make an i.i.d. measurement yi(k). Consider the
following two hypothesis:

H0 : yi(k) ∼ N (0, 1).

H1 : yi(k) ∼ N (1, 1).

We assume that each hypothesis is true with 0.5 probability.

1 Centralized Detector

The optimal centralized detector is a Naive Bayes detector. Define the average
to be

α(k) =
1

n(k + 1)

k∑
t=0

n∑
i=1

yi(k).

Hence, the centralized detector is

f(α(k)) =

{
0 if α(k) ≤ 0.5

1 if α(k) > 0.5

Define the probability of error of such detector to be Pc(k), then

Pc(k) = 0.5P (α(k) ≤ 0.5|H1) + 0.5P (α(k) > 0.5|H0) = P (α(k) > 0.5|H0)

We use large deviation theory to characterize Pc(k). Suppose xi(k) ∼
N (0, 1), then the moment generating function is given by

M(θ) =

∫ ∞
−∞

exp(θt)
1√
2π

exp

(
− t

2

2

)
dt = exp

(
θ2

2

)∫ ∞
−∞

1√
2π

exp

(
− (t− θ)2

2

)
dt = exp

(
θ2

2

)
.
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Hence, the log-moment generating function is

Λ(θ) = logM(θ) =
θ2

2
,

and

I(0.5) = sup
θ

0.5θ − Λ(θ) =
1

8
.

Hence, we know that Pc(k) ∼ exp(−nk/8).

2 Distributed Detection

Let A be a consensus matrix that is compatible with the topology G, such that

• A has an eigenvalue of 1 and all the other eigenvalues of A are strictly
inside the unit disk.

• 1 is both a left and right eigenvector of A.

Define J = 11T /n, then Ak → J as k →∞.
Define the state of sensor i at time k to be xi(k). The sensor update equation

can be written as

xi(k)+ =
k

k + 1
xi(k) +

1

k + 1
yi(k),

xi(k + 1) = aiixi(k)+ +
∑
j∈Ni

aijxj(k)+.

Hence,

x(k)+ =
k

k + 1
x(k) +

1

k + 1
y(k),

x(k + 1) = Ax(k)+.

Let us define
x̄(k + 1) = Jx(k + 1) = α(k)1.

For each sensor, it implements a detector fi, which is defined as

fi(xi(k)) =

{
0 if xi(k) ≤ 0.5

1 if xi(k) > 0.5

Denote the probability of error for each individual detector as Pi(k). By sym-
metry, we know that

Pi(k) = P (xi(k) ≥ 0.5|H0).

Clearly xi(k) < 0.5 if α(k − 1) < 0.5 − δ and xi(k) − α(k − 1) < δ, for any
δ > 0. Hence,

Pi(k) = P (α(k − 1) ≥ 0.5− δ|H0) + P (xi(k)− α(k − 1) ≥ δ|H0).
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For the first probability, we know that

I(0.5− δ) = sup
θ

(0.5− δ)θ − 0.5θ2 = 0.125 + ε,

where ε → 0 when δ → 0. Hence, P (α(k − 1) ≥ 0.5 − δ|H0) ∼ exp(−(0.125 +
ε)nk).

Now let us look at k(xi(k)− α(k − 1)). We know that

k(x(k)− x̄(k)) =
[
(A− J)y(k − 1) + (A− J)2y(k − 2) + · · ·+ (A− J)ky(0)

]
.

Hence, under hypothesis H0, k(x(k) − x̄(k)) is Gaussian distributed with
zero mean and with covariance:

(A− J)(A− J)T + · · ·+ (A− J)k+1
(
(A− J)k+1

)T ≤M.

Therefore, k(xi(k) − α(k − 1)) is Gaussian distributed with zero mean and
a bounded variance.

P (xi(k)− α(k − 1) ≥ δ|H0) =
1√
2π

∫ ∞
kδ/σ(k)

exp

(
− t

2

2

)
dt,

where σ(k) is the standard deviation of k(xi(k)− α(k − 1)).
For any x > 0, we have that

1√
2π

∫ ∞
x

exp

(
− t

2

2

)
dt ≤ 1√

2π

∫ ∞
x

t

x
exp

(
− t

2

2

)
dt ≤ 1

x
√

2π
exp

(
−x

2

2

)
.

Therefore, for large enough k

P (xi(k)− α(k − 1) ≥ δ|H0) ≤ exp

(
− 1

2Mii
k2δ2

)
.

Hence, one can prove that for any ε > 0, and large enough k,

Pi(k) ≤ exp (−(0.125 + ε)nk) .

On the other hand, Pi(k) ≥ Pc(k), which implies that

Pi(k) ≥ exp (−(0.125− ε)nk) .

Hence, n/8 is the rate function for Pi(k).
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