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We model a network composed of n agents as a graph G = {V, E}. V =
{1,2,...,n} is the set of vertices representing the agents. E C V x V is the set
of edges. (i,7) € E if and only if sensor 4 and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i,j) € E if and
only if (j,7) € E. We further assume that there is no self loop, i.e., (i,7) ¢ E.

At each time, each sensor make an i.i.d. measurement y;(k). Consider the
following two hypothesis:

HO : y;(k) ~ N(0,1).
H1 : y;(k) ~N(1,1).

We assume that each hypothesis is true with 0.5 probability.

1 Centralized Detector

The optimal centralized detector is a Naive Bayes detector. Define the average
to be

Define the probability of error of such detector to be P.(k), then
Pu(k) = 0.5P(a(k) < 0.5|H;) + 0.5P(a(k) > 0.5|Ho) = P(a(k) > 0.5|Hy)

We use large deviation theory to characterize P.(k). Suppose z;(k) ~
N(0,1), then the moment generating function is given by

M(6) = /_O; exp(@t)\/%exp (-f) dt — exp (922) /_O; L% exp (-“‘ﬁ) dt — exp (f) .




Hence, the log-moment generating function is
92
A(D) = log M (0) =
and 1
1(0.5) = sup0.50 — A(9) = 3
0

Hence, we know that P.(k) ~ exp(—nk/8).

2 Distributed Detection

Let A be a consensus matrix that is compatible with the topology G, such that

e A has an eigenvalue of 1 and all the other eigenvalues of A are strictly
inside the unit disk.

e 1 is both a left and right eigenvector of A.

Define J = 117 /n, then A¥ — J as k — oc.
Define the state of sensor ¢ at time k to be z;(k). The sensor update equation
can be written as

k 1
()T = — . -

$z(k‘ + 1) = a“.Tl(k‘)Jr + Z aijxj(k:)"'.
JEN;
Hence,

2 = ) (R,

z(k+1) = Az(k)*.
Let us define
Z(k+1)=Je(k+1)=a(k)l.
For each sensor, it implements a detector f;, which is defined as

0 ifai(k) <05

filwi(k)) = {1 if z;(k) > 0.5

Denote the probability of error for each individual detector as P;(k). By sym-
metry, we know that

Clearly z;(k) < 0.5 if a(k — 1) < 0.5 — § and z;(k) — a(k — 1) < 4, for any
6 > 0. Hence,

Pi(k) = P(a(k —1) > 0.5 — 8|Ho) + P(xi(k) — a(k — 1) > 6| Hy).



For the first probability, we know that

1(0.5 — §) = sup(0.5 — 6)0 — 0.50% = 0.125 + ¢,
0

where € — 0 when § — 0. Hence, P(a(k —1) > 0.5 — §|Hp) ~ exp(—(0.125 +
e)nk).
Now let us look at k(x;(k) — a(k — 1)). We know that

k(a(k) = 2(k) = [(A = Dy(k = 1) + (A= J)Py(k = 2) + -+ (A = J)*y(0)] .

Hence, under hypothesis Hy, k(z(k) — Z(k)) is Gaussian distributed with
zero mean and with covariance:

(A_J)(A_J)T++(A—J)k+1((A_J)k+1)T§M

Therefore, k(z;(k) — a(k — 1)) is Gaussian distributed with zero mean and
a bounded variance.

2
P(z;(k) — a(k —1) > 0|Hyp) = Wers /k&/ " exp (—t2> dt,

where o (k) is the standard deviation of k(z;(k) — a(k — 1)).
For any « > 0, we have that

e () [t 5)os o ()

Therefore, for large enough &

Plas®) ~ alk ~1) > H) < exp 120 )
Hence, one can prove that for any € > 0, and large enough &,
Pi(k) < exp(—(0.125 4+ ¢)nk) .
On the other hand, P;(k) > P.(k), which implies that
P;i(k) > exp (—(0.125 — e)nk).

Hence, n/8 is the rate function for P;(k).



