Gossip Algorithm

Yilin Mo

July 2, 2015

We model a network composed of n agents as a graph $G=\{V, E\} . V=$ $\{1,2, \ldots, n\}$ is the set of vertices representing the agents. $E \subseteq V \times V$ is the set of edges. $(i, j) \in E$ if and only if sensor i and j can communicate directly with each other. We will always assume that G is undirected, i.e. $(i, j) \in E$ if and only if $(j, i) \in E$. We further assume that there is no self loop, i.e., $(i, i) \notin E$.

At each time step, we assume a pair of nodes (i, j) is randomly selected with probability $p_{i j}$, where $(i, j) \in E$. They communicate with each other and perform the following update:

$$
x_{i}(k+1)=x_{j}(k+1)=\left(x_{i}(k)+x_{j}(k)\right) / 2 .
$$

All the other nodes that are not selected keep their own states:

$$
x_{l}(k+1)=x_{l}(k), \forall l \notin\{i, j\} .
$$

Let us define matrix

$$
W_{i j}=I-\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T} / 2
$$

Then the update equation can be written in matrix form as

$$
x(k+1)=W(k) x(k)=W_{i j} x(k), \text { with probability } p_{i j} .
$$

Define $y(k)=x(k)-x_{\text {ave }}=(I-J) x(k)($ why? $)$.

$$
y(k+1)=(W(k)-J) y(k) .
$$

Problem:

- Under what condition does $x(k)$ converges to the $x_{\text {ave }}=J x(0)$, where $J=\mathbf{1 1}^{T} / n$?
- How fast is the convergence rate?

1 Products of Random Numbers

Let us assume that $\alpha(k)$ are i.i.d. distributed and define

$$
\beta(k)=\alpha(k) \ldots \alpha(0)
$$

1. $\beta(k)$ converges to 0 almost surely if

$$
P\left(\lim _{k \rightarrow \infty} \beta(k)=0\right)=1 .
$$

2. $\beta(k)$ converges to 0 in L_{p} if

$$
\lim _{k \rightarrow \infty} \mathbb{E} \beta(k)^{p}=0
$$

The L_{p} convergence rate can be defined as

$$
\rho_{p}=\sqrt[k]{\mathbb{E}\left(\beta(k)^{p}\right)}
$$

A special case is convergence in mean square sense:

$$
\lim _{k \rightarrow \infty} \mathbb{E} \beta(k)^{2}=0
$$

Theorem 1. $\beta(k)$ converges in L_{p} if and only if

$$
\rho_{p}=\mathbb{E}\left(\alpha(0)^{p}\right)<1
$$

Furthermore,

$$
P\left(\lim _{k \rightarrow \infty} \sqrt[k]{\beta(k)}=\exp [\mathbb{E}(\log \alpha(k))]\right)=1
$$

Proof. Since $\alpha(k)$ are independent of each other,

$$
\mathbb{E} \beta(k)^{p}=\prod_{t=0}^{k} \mathbb{E} \alpha(t)^{p}
$$

Hence, $\rho_{p}=\mathbb{E} \alpha(t)^{p}$.
On the other hand,

$$
\log \beta(k)=\sum_{t=0}^{k} \log \alpha(t)
$$

By LLN,

$$
\lim _{k \rightarrow \infty} \frac{\log \beta(k)}{k}=\mathbb{E}(\log \alpha(t)), \text { almost surely }
$$

Let us assume that

$$
\alpha(k)= \begin{cases}0 & \text { with probability } 0.5 \\ 2 & \text { with probability } 0.5\end{cases}
$$

Then $\beta(k)$ converges almost surely, but does not converge in L_{p}.

2 Products of Random Matrices

The following theorem can be seen as a generalization of LLN for noncommutative case

Theorem 2. Let $X(k)$ be i.i.d. distributed, if

$$
\mathbb{E}[\max (\log \|X(k)\|, 0)]<\infty,
$$

then

$$
\lim _{k \rightarrow \infty} k^{-1} \log \|X(k) X(k-1) \ldots X(1)\|=\rho_{a s}
$$

with probability 1, where $\rho_{a s}$ is defined as

$$
\rho_{a s}=\lim _{k \rightarrow \infty} k^{-1} \mathbb{E}(\log \|X(k) X(k-1) \ldots X(1)\|)
$$

For general cases, the almost surely convergence rate $\rho_{a s}$ is still unknown.
Now let us consider the mean square convergence rate. First look at the $W_{i j}$ matrix, we know that

- $W_{i j}$ is symmetric.
- $W_{i j} \leq I$.
- $W_{i j} 1=1$.

Define

$$
W \triangleq \mathbb{E} W(k)=\sum_{(i, j) \in E} p_{i j} W_{i j}
$$

Therefore,

- W is symmetric.
- $W \leq I$.
- $W 1=1$.

Define $\mathcal{W}=W-J$, then

$$
y(k+1)=(W(k)-J) y(k) \Longrightarrow \mathbb{E} y(k+1)=\mathcal{W} \mathbb{E} y(k)
$$

Therefore,

$$
\mathbb{E} y(k)=\mathcal{W}^{k} y(0)
$$

By Jensen's inequality,

$$
\begin{equation*}
\mathbb{E}\|y(k)\|^{2} \geq\|\mathbb{E} y(k)\|^{2}=\left\|\mathcal{W}^{k} y(0)\right\|^{2} \tag{1}
\end{equation*}
$$

Thus, there exists an $y(0)$ (which is the eigenvector of $\lambda_{2}(W)$, such that

$$
\mathbb{E}\|y(k)\|^{2} \geq \lambda_{2}(W)^{2 k}\|y(0)\|^{2}
$$

On the other hand,

$$
y(k+1)^{T} y(k+1)=y(k)^{T}(W(k)-J)^{2} y(k)=y(k)^{T}(W(k)-J) y(k)
$$

Hence,

$$
\mathbb{E}\|y(k+1)\|^{2}=\mathbb{E}\left[y(k)^{T} \mathbb{E}((W(k)-J) \mid y(k)) y(k)\right]=\mathbb{E}\left[y(k)^{T} \mathcal{W} y(k)\right] \leq \lambda_{2}(W) \mathbb{E}\|y(k)\|^{2}
$$

Thus,

$$
\mathbb{E}\|y(k)\|^{2} \leq \lambda_{2}(W)^{k}\|y(0)\|^{2}
$$

Hence, the mean square convergence rate satisfies

$$
\lambda_{2}(W)^{2} \leq \rho_{2} \leq \lambda_{2}(W)
$$

The gossip algorithm converges in the mean square sense if and only if $\lambda_{2}(W)<1$.

To get the exact mean square convergence rate, we need to consider

$$
Y(k)=y(k) y(k)^{T}
$$

Clearly,

$$
Y(k+1)=(W(k)-J) Y(k)(W(k)-J)
$$

Hence,

$$
\mathbb{E} Y(k+1)=\sum_{(i, j) \in E} p_{i j}\left(W_{i j}-J\right) \mathbb{E} Y(k)\left(W_{i j}-J\right) .
$$

If we define the operator $\mathcal{A}: \mathbb{S}_{n} \rightarrow \mathbb{S}_{n}$:

$$
\mathcal{A}(X)=\sum_{(i, j) \in E} p_{i j}\left(W_{i j}-J\right) X\left(W_{i j}-J\right)
$$

$\mathcal{A}(X)$ is a linear operator on \mathbb{S}_{n}. The mean square convergence rate ρ_{2} will be the operator norm of \mathcal{A}.

Examples:

Assume that $p_{12}=0.5, p_{23}=0.5$. Hence,

$$
W=\frac{1}{4}\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

The eigenvalues are $1,0.75,0.25$. The corresponding eigenvectors are

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]
$$

Hence, we know that $9 / 16 \leq \rho_{2} \leq 3 / 4$. Now let us define

$$
v_{a}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right], v_{b}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

We argue that $y(k)$ is either $\theta(k) v_{a}$ or $\theta(k) v_{b}$. (Why?)
If $y(k)=\theta(k) v_{a}$, then if $(1,2)$ is selected, $y(k+1)=y(k)$. On the other hand, if $(2,3)$ is selection, then

$$
y(k+1)=\theta(k)\left[\begin{array}{c}
1 \\
-0.5 \\
-0.5
\end{array}\right]=-\frac{\theta(k)}{2} v_{b}
$$

Hence

$$
\|y(k+1)\|^{2}= \begin{cases}\|y(k)\|^{2} & \text { with probability } 0.5 \\ 0.25\|y(k)\|^{2} & \text { with probability } 0.5\end{cases}
$$

The true mean square convergence rate should be

$$
\rho_{2}=0.5 \times 1+0.5 \times 0.25=\frac{5}{8}
$$

