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We model a network composed of n agents as a graph G = {V, E}. V =
{1, 2, . . . , n} is the set of vertices representing the agents. E ⊆ V × V is the set
of edges. (i, j) ∈ E if and only if sensor i and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i, j) ∈ E if and
only if (j, i) ∈ E. We further assume that there is no self loop, i.e., (i, i) /∈ E.

At each time step, we assume a pair of nodes (i, j) is randomly selected
with probability pij , where (i, j) ∈ E. They communicate with each other and
perform the following update:

xi(k + 1) = xj(k + 1) = (xi(k) + xj(k))/2.

All the other nodes that are not selected keep their own states:

xl(k + 1) = xl(k), ∀l /∈ {i, j}.

Let us define matrix

Wij = I − (ei − ej)(ei − ej)T /2.

Then the update equation can be written in matrix form as

x(k + 1) = W (k)x(k) = Wijx(k), with probability pij .

Define y(k) = x(k)− xave = (I − J)x(k) (why?).

y(k + 1) = (W (k)− J)y(k).

Problem:

• Under what condition does x(k) converges to the xave = Jx(0), where
J = 11T /n?

• How fast is the convergence rate?
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1 Products of Random Numbers

Let us assume that α(k) are i.i.d. distributed and define

β(k) = α(k) . . . α(0).

1. β(k) converges to 0 almost surely if

P ( lim
k→∞

β(k) = 0) = 1.

2. β(k) converges to 0 in Lp if

lim
k→∞

Eβ(k)p = 0.

The Lp convergence rate can be defined as

ρp = k
√
E (β(k)p)

A special case is convergence in mean square sense:

lim
k→∞

Eβ(k)2 = 0

Theorem 1. β(k) converges in Lp if and only if

ρp = E (α(0)p) < 1.

Furthermore,

P

(
lim
k→∞

k
√
β(k) = exp [E (logα(k))]

)
= 1.

Proof. Since α(k) are independent of each other,

Eβ(k)p =

k∏
t=0

Eα(t)p.

Hence, ρp = Eα(t)p.
On the other hand,

log β(k) =

k∑
t=0

logα(t).

By LLN,

lim
k→∞

log β(k)

k
= E (logα(t)) , almost surely

Let us assume that

α(k) =

{
0 with probability 0.5

2 with probability 0.5

Then β(k) converges almost surely, but does not converge in Lp.
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2 Products of Random Matrices

The following theorem can be seen as a generalization of LLN for noncommu-
tative case

Theorem 2. Let X(k) be i.i.d. distributed, if

E [max(log ‖X(k)‖, 0)] <∞,

then
lim
k→∞

k−1 log ‖X(k)X(k − 1) . . . X(1)‖ = ρas,

with probability 1, where ρas is defined as

ρas = lim
k→∞

k−1E (log ‖X(k)X(k − 1) . . . X(1)‖) .

For general cases, the almost surely convergence rate ρas is still unknown.
Now let us consider the mean square convergence rate. First look at the Wij

matrix, we know that

• Wij is symmetric.

• Wij ≤ I.

• Wij1 = 1.

Define
W , EW (k) =

∑
(i,j)∈E

pijWij .

Therefore,

• W is symmetric.

• W ≤ I.

• W1 = 1.

Define W = W − J , then

y(k + 1) = (W (k)− J)y(k) =⇒ Ey(k + 1) =WEy(k).

Therefore,
Ey(k) =Wky(0).

By Jensen’s inequality,

E‖y(k)‖2 ≥ ‖Ey(k)‖2 = ‖Wky(0)‖2. (1)

Thus, there exists an y(0) (which is the eigenvector of λ2(W ), such that

E‖y(k)‖2 ≥ λ2(W )2k‖y(0)‖2
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On the other hand,

y(k + 1)T y(k + 1) = y(k)T (W (k)− J)2y(k) = y(k)T (W (k)− J)y(k).

Hence,

E‖y(k+1)‖2 = E
[
y(k)TE((W (k)− J)|y(k))y(k)

]
= E

[
y(k)TWy(k)

]
≤ λ2(W )E‖y(k)‖2.

Thus,
E‖y(k)‖2 ≤ λ2(W )k‖y(0)‖2.

Hence, the mean square convergence rate satisfies

λ2(W )2 ≤ ρ2 ≤ λ2(W ).

The gossip algorithm converges in the mean square sense if and only if
λ2(W ) < 1.

To get the exact mean square convergence rate, we need to consider

Y (k) = y(k)y(k)T .

Clearly,
Y (k + 1) = (W (k)− J)Y (k)(W (k)− J).

Hence,

EY (k + 1) =
∑

(i,j)∈E

pij(Wij − J)EY (k)(Wij − J).

If we define the operator A : Sn → Sn:

A(X) =
∑

(i,j)∈E

pij(Wij − J)X(Wij − J).

A(X) is a linear operator on Sn. The mean square convergence rate ρ2 will be
the operator norm of A.

Examples:

1 2 3

Assume that p12 = 0.5, p23 = 0.5. Hence,

W =
1

4

3 1 0
1 2 1
0 1 3

 .
The eigenvalues are 1, 0.75, 0.25. The corresponding eigenvectors are

v1 =

1
1
1

 , v2 =

 1
0
−1

 , v3 =

−1
2
−1

 .
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Hence, we know that 9/16 ≤ ρ2 ≤ 3/4. Now let us define

va =

 1
1
−2

 , vb =

−2
1
1


We argue that y(k) is either θ(k)va or θ(k)vb. (Why?)

If y(k) = θ(k)va, then if (1, 2) is selected, y(k + 1) = y(k). On the other
hand, if (2, 3) is selection, then

y(k + 1) = θ(k)

 1
−0.5
−0.5

 = −θ(k)

2
vb.

Hence

‖y(k + 1)‖2 =

{
‖y(k)‖2 with probability 0.5

0.25‖y(k)‖2 with probability 0.5

The true mean square convergence rate should be

ρ2 = 0.5× 1 + 0.5× 0.25 =
5

8
.
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