Variants of Average Consensus

Yilin Mo

July 2, 2015

1 Finite Time Average Consensus

Consider the following update equation:

$$
\begin{equation*}
x(k+1)=(I-\alpha(k) L) x(k), \tag{1}
\end{equation*}
$$

We know if we fix $0<\alpha(k)<2 / \lambda_{n}(L)$, then

$$
\prod_{k=0}^{\infty}(I-\alpha(k) L)=J=\frac{\mathbf{1 1}^{T}}{n} .
$$

Assume that $L=U \Lambda U^{T}$, then

$$
\prod_{k=0}^{n-2}=U\left[\begin{array}{llll}
1 & & & \\
& f\left(\lambda_{2}(L)\right) & & \\
& & \ddots & \\
& & & f\left(\lambda_{n}(L)\right)
\end{array}\right] U^{T},
$$

where $f(x)$ is an $n-1$ th degree polynomial of the following form:

$$
f(x)=\prod_{k=0}^{n-2}(1-\alpha(k) x) .
$$

Hence, if we choose $\alpha(0)=1 / \lambda_{2}(L), \ldots, \alpha(n-2)=1 / \lambda_{n}(L)$, then $f\left(\lambda_{i}(L)\right)=0$, for any $i=2, \ldots, n$. Thus, we can reach consensus in $n-1$ steps.

In general, if we do not know all the eigenvalues of L, but suppose that we know $\lambda_{i}(L) \in[a, b]$, for all $i=2, \ldots, n$. Further assume that we can use a periodic $\alpha(k)$, with $\alpha(k+T)=\alpha(k)$, then the problem becomes finding a T th polynomial $f(x)$, such that

$$
\begin{array}{cl}
\underset{f(x)}{\operatorname{minimize}} & \max _{x \in[a, b]}|f(x)| \\
\text { subject to } & f(0)=1 \\
& f(x) \text { is a } T \text { th degree polynomial }
\end{array}
$$

If $T=1$, then the best function is $f(x)=1-\frac{2}{a+b} x$.
For higher $T, f(x)$ will be a scaled and shifted Chebyshev polynomial, which gives

$$
\alpha(k)=\frac{b-a}{2} \cos \left(\frac{2 k+1}{2 T} \pi\right)+\frac{a+b}{2}, k=0, \ldots, T-1 .
$$

2 Consensus with Noise

We use the following consensus scheme:

$$
x(k+1)=(I-\alpha L) x(k),
$$

where L is the Laplacian matrix and $\alpha>0$. Hence,

$$
\begin{equation*}
x_{i}(k+1)=\left(1-d_{i} \alpha\right) x_{i}(k)+\alpha \sum_{j \in \mathcal{N}_{i}} x_{j}(k) \tag{2}
\end{equation*}
$$

where \mathcal{N}_{i} is the set of the neighboring node of i and $d_{i}=\left|\mathcal{N}_{i}\right|$ is the degree of node i.

Notice that $x_{j}(k)$ in (2) is the message received by node i from node j. Now consider that instead of receiving $x_{j}(k)$, the node is receives $z_{i j}(k)$, which is a noisy version of $x_{j}(k)$:

$$
z_{i j}(k)=x_{j}(k)+w_{i j}(k)
$$

Hence, (2) becomes:

$$
x_{i}(k+1)=\left(1-d_{i} \alpha\right) x_{i}(k)+\alpha \sum_{j \in \mathcal{N}_{i}} x_{j}(k)+\alpha \sum_{j \in \mathcal{N}_{i}} w_{i j}(k) .
$$

Define

$$
v(k)=\left[\begin{array}{c}
\sum_{j \in \mathcal{N}_{1}} w_{1 j}(k) \\
\vdots \\
\sum_{j \in \mathcal{N}_{n}} w_{n j}(k)
\end{array}\right] .
$$

Therefore,

$$
x(k+1)=(I-\alpha L) x(k)+\alpha w(k),
$$

where we assume that $w(k)$ is i.i.d., zero mean and has a bounded second moment. The covariance of $w(k)$ is defined as Q

If α is fixed, then we cannot achieve consensus. Hence, we need to use a time varying $\alpha(k)$.

$$
\begin{equation*}
x(k+1)=(I-\alpha(k) L) x(k)+\alpha(k) v(k), \tag{3}
\end{equation*}
$$

We choose $\alpha(k) \geq 2 /\left(\lambda_{2}(L)+\lambda_{n}(L)\right)$ to satisfies the following condition:

1. $\sum_{k=0}^{\infty} \alpha(k)=\infty$.
2. $\sum_{k=0}^{\infty} \alpha(k)^{2}<\infty$.

Condition 2 implies that $\alpha(k) \rightarrow 0$.
One possible choice $\alpha(k)=1 /(k+1)$.

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}=\frac{\pi^{2}}{6}<0
$$

In fact, we can choose $\alpha(k)=(k+1)^{-\varphi}$, for any $0.5<\varphi<1$.
Define $y(k)=x(k)-J x(k)$. (Notice that this definition is different from our previous one, where $y(k)=x(k)-J x(0)$. why?) Define $\theta(k)=\mathbf{1}^{T} x(k) / n$. Hence, $x(k)=\theta(k) \mathbf{1}+y(k)$.

By (3), we have

$$
\theta(k+1)=\theta(k)+\alpha(k) \mathbf{1}^{T} v(k) / n
$$

Hence, for any $k_{1}>k_{2}$,

$$
\mathbb{E}\left(\theta\left(k_{1}\right)-\theta\left(k_{2}\right)\right)^{2}=\frac{\mathbf{1}^{T} Q \mathbf{1}}{n^{2}} \sum_{t=k_{2}}^{k_{1}-1} \alpha(t)^{2}
$$

Hence, $\theta(k)$ converges in L_{2}. Define θ as the L_{2} limit of θ_{k}.
Now let us look at $y(k)$. By (3),

$$
y(k+1)=[(I-\alpha(k) L)(I-J)] y(k)+\alpha(k)(I-J) v(k) .
$$

Let us define $\mathcal{P}(k)=(I-\alpha(k) L)(I-J)$. Therefore,

$$
y(k+1)=\prod_{t=0}^{k} \mathcal{P}(t) y(0)+\sum_{\tau=0}^{k}\left(\prod_{t=\tau+1}^{k} \mathcal{P}(t)\right) \alpha(\tau)(I-J) v(\tau)
$$

Clearly,

$$
\|\mathcal{P}(k)\|=1-\alpha(k) \lambda_{2}(L)
$$

Hence,

$$
\left\|\prod_{t=k_{1}}^{k_{2}} \mathcal{P}(t)\right\| \leq \prod_{t=k_{1}}^{k_{2}}\left(1-\alpha(t) \lambda_{2}(L)\right) \leq \prod_{t=k_{1}}^{k_{2}} \exp \left(-\alpha(t) \lambda_{2}(L)\right)=\exp \left(-\sum_{t=k_{1}}^{k_{2}} \alpha(t) \lambda_{2}(L)\right)
$$

which implies that

$$
\lim _{k \rightarrow \infty} \prod_{t=0}^{k} \mathcal{P}(k)=0
$$

On the other hand,

$$
\mathbb{E}\left\|\left(\prod_{t=\tau+1}^{k} \mathcal{P}(t)\right) \alpha(\tau)(I-J) v(\tau)\right\|^{2} \leq \beta \exp \left(-2 \sum_{t=\tau+1}^{k} \alpha(t) \lambda_{2}(L)\right) \alpha(\tau)^{2}
$$

where $\beta=\operatorname{tr}((I-J) Q(I-J))$. Hence

$$
\begin{aligned}
& \mathbb{E}\left\|\sum_{\tau=0}^{k}\left(\prod_{t=\tau+1}^{k} \mathcal{P}(t)\right) \alpha(\tau)(I-J) v(\tau)\right\|^{2}=\sum_{\tau=0}^{k} \mathbb{E}\left\|\left(\prod_{t=\tau+1}^{k} \mathcal{P}(t)\right) \alpha(\tau)(I-J) v(\tau)\right\|^{2} \\
& \leq \beta \sum_{\tau=0}^{k}\left[\exp \left(-2 \sum_{t=\tau+1}^{k} \alpha(t) \lambda_{2}(L)\right) \alpha(\tau)^{2}\right] \rightarrow 0
\end{aligned}
$$

Hence, $y(k) \rightarrow 0$. As a result, $x(k)$ converges to $\theta 1$ in the mean square sense $\left(L_{2}\right)$.

