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1 Finite Time Average Consensus
Consider the following update equation:
z(k+1) = (I —a(k)L)z(k),

We know if we fix 0 < a(k) < 2/\,(L), then
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Hence, if we choose a(0) = 1/A2(L),...,a(n—2) = 1/, (L), then f(\;(L))

for any ¢ = 2,...,n. Thus, we can reach consensus in n — 1 steps.
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In general, if we do not know all the eigenvalues of L, but suppose that we
know \;(L) € [a,b], for all i = 2,...,n. Further assume that we can use a
periodic a(k), with a(k + T) = a(k), then the problem becomes finding a Tth

polynomial f(z), such that

minimize max T
i Jnax, |f(2)]
subject to f0)=1

f(x) is a Tth degree polynomial



If T =1, then the best function is f(z) =1 — a%rbac.
For higher T, f(z) will be a scaled and shifted Chebyshev polynomial, which

gives
b—a 2k+1 a+b
a(k) = 5 cos( 5T 7r>+ 5 k=0,...,T—1.

2 Consensus with Noise

We use the following consensus scheme:
x(k+1)=({—al)x(k),

where L is the Laplacian matrix and o > 0. Hence,

zi(k+1)=(1—-dja)z; (k) + « Z z;(k), (2)
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where N; is the set of the neighboring node of i and d; = || is the degree of
node 3.

Notice that x;(k) in (2) is the message received by node 7 from node j. Now
consider that instead of receiving x;(k), the node is receives z;;(k), which is a
noisy version of x;(k):

zij (k) = x(k) 4+ wi; (k).

Hence, (2) becomes:

.’El(k + 1) = (1 - dza)xl(k) + « Z l‘JU{?) + « Z wij(k).
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Therefore,

z(k+1)={I - al)x(k) + aw(k),

where we assume that w(k) is i.i.d., zero mean and has a bounded second mo-
ment. The covariance of w(k) is defined as @

If « is fixed, then we cannot achieve consensus. Hence, we need to use a
time varying (k).

z(k+1) = — alk)L)x(k) + a(k)v(k), (3)
We choose a(k) > 2/(A2(L) + A\ (L)) to satisfies the following condition:
L > r ga(k) = oo.
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Condition 2 implies that a(k) — 0.
One possible choice a(k) =1/(k +1).
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In fact, we can choose a(k) = (k+1)~%, for any 0.5 < ¢ < 1.

Define y(k) = x(k) — Jx(k;) (Notlce that this definition is different from
our previous one, where y(k) = x(k) — Jx(0). why?) Define 0(k) = 17x(k)/n.
Hence, x(k) = (k)1 + y(k).

By (3), we have

O(k +1) = 0(k) + (k)17 v(k) /n.
Hence, for any ky > ko,
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Hence, 0(k) converges in Lo. Define 6 as the Lo limit of 6.
Now let us look at y(k). By (3),

y(k+1) = [(I = a(R)L)(I = J)]y(k) + a(k)(I = J)v(k).

Let us define P(k) = (I — a(k)L)(I — J). Therefore,
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Clearly,
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which implies that

On the other hand,
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where 8 =tr (I — J)Q(I — J)). Hence
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Hence, y(k) — 0. As a result, z(k) converges to 01 in the mean square sense
(L2).



