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1 Average Consensus Algorithm

We model a network composed of n agents as a graph G = {V, E}. V =
{1,2,...,n} is the set of vertices representing the agents. E C V x V is the set
of edges. (i,7) € E if and only if sensor ¢ and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i,j) € E if and
only if (j,4) € E. We further assume that there is no self loop, i.e., (i,7) ¢ E.
The neighborhood of sensor 7 is defined as

NG 2{jeV:(ij)€E}. (1)

A path p = (vg, v1)(v1,v2) ... (vi—1,v;) is a sequence of edges, such that each
(Uk,vk+1) € FE.

A graph is called connected if for any pair i,j € V, there always exists a
path that connects ¢ and j.

Suppose that each agent has an initial state x;(0). At each iteration, sensor
¢ will communicate with all its neighbors and update its state according to the
following update equation

JEN (i)

Let us define the vector z(k) £ [z1(k),...,zn (k)] € R™ and matrix P =
[pij] € R™*™. Now we can rewrite (2) in its matrix form as

Tpy1 = Puy. (3)
Let us define the average vector to be

1'2(0)
ave é 1 4
Fave £ T, (4)

where 1 € R" is a vector whose elements are all equal to 1. Also let us define
the error vector y(k) to be

y<k) £ CC(]C) — Zave- (5)



The goal of average consensus is to guarantee that y(k) — 0 as k — oo through
the update equation (3).

Let us arrange the eigenvalues of P in decreasing order as A1 (P) > Ao(P) ... >
An(P).

Theorem 1. The following conditions are necessary and sufficient in order to
achieve average consensus from any initial condition x(0):

1. M(P)=1and |\(P)| <1 foralli=2,...,N.

2. P1=1, i.e. 1 is an eigenvector of P.

3. 1TP =17, i.e. 1 is also a left-eigenvector of P.
Proof. First, suppose condition 1-3 hold. Hence, P can be written as

P=J4+Q.
where J = 117 /n and @ is stable and
JB =DBJ =0.

Hence

lim P* =J+ lim QF = J.
k— o0

k—o0

On the other hand, suppose that y(k) — 0 for any initial condition z(0). As a
result

lim P* = J.
k—oc0
However,
Pk = Z)\fu}iv;—r, (6)
i=1

where w;, v; are the right and left eigenvectors of P.

(we assume P is diagonalizable. The proof can be revise to consider P has
a Jordan form.)

Hence, condition 1-3 hold. O

Define the convergence rate p as

k
P I
e v | [5(O)]

By (6), p = max(Az(P), ~An(P)).



2 Fast Convergence via Convex Optimization

We want to solve the following problem:

mini}gnize p
subject to 1Tp =17
P1=1

a;; =01if (4,j) ¢ E and i # j.

In general, this problem is very difficult for arbitrary P, since p is not a convex
function of P.
In general, the largest eigenvalue is not a convex function. For example,

o([5 5]) =V ([0l @) = @r o

However, if P is assumed to be symmetric, then the problem is a convex opti-
mization problem and can be solved efficiently.

3 Laplacian based Consensus
The degree of sensor ¢ is defined as
d; £ |N(i)]. (7)

A graph is called d-regular graph if all the vertices have the same degree
d,i.e. dmin = dmaw =d.
Now we can define the Laplacian matrix L of graph G as

L2D- 4, (8)

where D = diag(dy,...,d,) is the degree matrix. A is the adjacency matrix,
a;j = 1 if and only if (i,7) € E.

Theorem 2. L is positive semidefinite. Furthermore, L has an eigenvalue 0
and the corresponding eigenvector 1. As a result, arrange the eigenvalues of L
in the ascending order:

0=Ai(L) <X(L) < < A (D). (9)
Furthermore the graph G is connected if and only if Ao(L) > 0 is strictly positive.

Proof. Assume v = [vy,...,v,]T € R”, then

1
v Ly = 3 Z (v; —vj)* > 0.
(i,9)€E



Hence, L is positive semidefinite and has a eigenvalue 0 and the corresponding
eigenvector 1.

If the graph is connected, then v Lv = 0 implies v = 1. Hence, Ao(L) > 0.
If the graph is disconnected, then we can construct a v # 1, such that v7' Lv = 0.
Hence, A\z(L) = 0. O

We now have the following corollary:

Corollary 1. There exists an P satisfies condition 1-3 if and only if G is
connected.

Proof. If G is not connected, then clearly consensus cannot be achieved.
On the other hand, if G is connected, then we can choose P = I —«aL, where
a < 2/A,(L). O

Since p = max(A2(P), — A, (P), if we consider the P of the form I —«L, then
the optimal « is given by

. 2
R WU WIS W)
and
« _ Aa(L) = A2(L)
P T D) + x(D)

4 Laplacian from some graph

4.1 Complete Graph
L=nJ+nl

Hence, L has eigenvalue 0 with multiplicity 1 and eigenvalue n with multiplicity
n— 1.

4.2 Complete Bipartite graph K,

. bIa _]-a><b
L= [_1b><a aly }

The eigenvalues are
0,a,b,a+b

with multiplicities
1,b—1,a—1,1.

The corresponding eigenvectors are

1 v 0 b1,
a+b> ol lwl’ —aly s

where 1,07 =0 and 1,w” = 0.



4.3 Cayley Graph

Let H = (V,x) be a group and S = S~! be a symmetric set. We can define a
graph G = (V, E), such that

(r,y) EE<a 'y cE.
Cayley graph is d-regular with d = |S|. For example,
e H=(Z,+)and S ={-1,1} is an infinite line.
e H=(Z,,+) and S = {1,n — 1} is a cyclic graph.
We consider the Cayley graph generated by H = (Z,,,+) and S.

Theorem 3. Define w = exp(2j7/n).

Ae(L) =18 =) wh,

ses
with eigenvector
[1 Wk w("_l)k]T.
In general, one can consider
fre(i) = Wk

Hence, for any z,y € Z,, fi(2)fx(y) = fe(z+y). Such an f, is called a character
of the graph G.
The above theorem can be generalized to

Theorem 4. For any Cayley graph of group H and symmetric set S. Define
vector

T
[X(1),x(2),....x(n)] ",
where x is a character of G. Then v is an eigenvector with eigenvalue:
151 = 5" x(s),
seS

The nice thing about Cayley graph is that we can construct an infinitely
many d-regular graphs, called Ramanujan Graphs, which satisfy

Xo(L)>d—2Vd—1, Ay(L) < d+2Vd— 1.

Hence, the convergence rate of a consensus algorithm on these graphs is given
by

d—1
P = I

which does not grow with respect to the number of node n.



