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1 Average Consensus Algorithm

We model a network composed of n agents as a graph G = {V, E}. V =
{1, 2, . . . , n} is the set of vertices representing the agents. E ⊆ V × V is the set
of edges. (i, j) ∈ E if and only if sensor i and j can communicate directly with
each other. We will always assume that G is undirected, i.e. (i, j) ∈ E if and
only if (j, i) ∈ E. We further assume that there is no self loop, i.e., (i, i) /∈ E.
The neighborhood of sensor i is defined as

N (i) , {j ∈ V : (i, j) ∈ E}. (1)

A path p = (v0, v1)(v1, v2) . . . (vl−1, vl) is a sequence of edges, such that each
(vk, vk+1) ∈ E.

A graph is called connected if for any pair i, j ∈ V , there always exists a
path that connects i and j.

Suppose that each agent has an initial state xi(0). At each iteration, sensor
i will communicate with all its neighbors and update its state according to the
following update equation

xi(k + 1) = piixi(k) +
∑

j∈N (i)

pijxj(k). (2)

Let us define the vector x(k) , [x1(k), . . . , xN (k)]′ ∈ Rn and matrix P ,
[pij ] ∈ Rn×n. Now we can rewrite (2) in its matrix form as

xk+1 = Pxk. (3)

Let us define the average vector to be

xave ,
1′x(0)

N
1, (4)

where 1 ∈ Rn is a vector whose elements are all equal to 1. Also let us define
the error vector y(k) to be

y(k) , x(k)− xave. (5)
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The goal of average consensus is to guarantee that y(k)→ 0 as k →∞ through
the update equation (3).

Let us arrange the eigenvalues of P in decreasing order as λ1(P ) ≥ λ2(P ) . . . ≥
λn(P ).

Theorem 1. The following conditions are necessary and sufficient in order to
achieve average consensus from any initial condition x(0):

1. λ1(P ) = 1 and |λi(P )| < 1 for all i = 2, . . . , N .

2. P1 = 1, i.e. 1 is an eigenvector of P .

3. 1TP = 1T , i.e. 1 is also a left-eigenvector of P .

Proof. First, suppose condition 1-3 hold. Hence, P can be written as

P = J +Q.

where J = 11T /n and Q is stable and

JB = BJ = 0.

Hence
lim
k→∞

P k = J + lim
k→∞

Qk = J.

On the other hand, suppose that y(k) → 0 for any initial condition x(0). As a
result

lim
k→∞

P k = J.

However,

P k =

n∑
i=1

λkiwiv
T
i , (6)

where wi, vi are the right and left eigenvectors of P .
(we assume P is diagonalizable. The proof can be revise to consider P has

a Jordan form.)
Hence, condition 1-3 hold.

Define the convergence rate ρ as

ρ , lim
k→∞

sup
y(0) 6=0

k

√
‖y(k)‖2
‖y(0)‖2

By (6), ρ = max(λ2(P ),−λn(P )).
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2 Fast Convergence via Convex Optimization

We want to solve the following problem:

minimize
P

ρ

subject to 1TP = 1T

P1 = 1

aij = 0 if (i, j) /∈ E and i 6= j.

In general, this problem is very difficult for arbitrary P , since ρ is not a convex
function of P .

In general, the largest eigenvalue is not a convex function. For example,

ρ

([
0 α
β 0

])
=
√
αβ. ρ

([
0 (α+ β)/2

(α+ β)/2 0

])
= (α+ β)/2.

However, if P is assumed to be symmetric, then the problem is a convex opti-
mization problem and can be solved efficiently.

3 Laplacian based Consensus

The degree of sensor i is defined as

di , |N (i)|. (7)

A graph is called d-regular graph if all the vertices have the same degree
d,i.e. dmin = dmax = d.

Now we can define the Laplacian matrix L of graph G as

L , D −A, (8)

where D = diag(d1, . . . , dn) is the degree matrix. A is the adjacency matrix,
aij = 1 if and only if (i, j) ∈ E.

Theorem 2. L is positive semidefinite. Furthermore, L has an eigenvalue 0
and the corresponding eigenvector 1. As a result, arrange the eigenvalues of L
in the ascending order:

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). (9)

Furthermore the graph G is connected if and only if λ2(L) > 0 is strictly positive.

Proof. Assume v = [v1, . . . , vn]T ∈ Rn, then

vTLv =
1

2

∑
(i,j)∈E

(vi − vj)2 ≥ 0.
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Hence, L is positive semidefinite and has a eigenvalue 0 and the corresponding
eigenvector 1.

If the graph is connected, then vTLv = 0 implies v = 1. Hence, λ2(L) > 0.
If the graph is disconnected, then we can construct a v 6= 1, such that vTLv = 0.
Hence, λ2(L) = 0.

We now have the following corollary:

Corollary 1. There exists an P satisfies condition 1-3 if and only if G is
connected.

Proof. If G is not connected, then clearly consensus cannot be achieved.
On the other hand, if G is connected, then we can choose P = I−αL, where

α < 2/λn(L).

Since ρ = max(λ2(P ),−λn(P ), if we consider the P of the form I−αL, then
the optimal α is given by

α∗ =
2

λ2(L) + λn(L)

and

ρ∗ =
λn(L)− λ2(L)

λn(L) + λ2(L)
.

4 Laplacian from some graph

4.1 Complete Graph

L = nJ + nI

Hence, L has eigenvalue 0 with multiplicity 1 and eigenvalue n with multiplicity
n− 1.

4.2 Complete Bipartite graph Ka,b

L =

[
bIa −1a×b
−1b×a aIb

]
The eigenvalues are

0, a, b, a+ b

with multiplicities
1, b− 1, a− 1, 1.

The corresponding eigenvectors are

1a+b,

[
v
0

]
,

[
0
w

]
,

[
b1a

−a1b

]
,

where 1av
T = 0 and 1bw

T = 0.
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4.3 Cayley Graph

Let H = (V, ∗) be a group and S = S−1 be a symmetric set. We can define a
graph G = (V,E), such that

(x, y) ∈ E ⇔ x−1y ∈ E.

Cayley graph is d-regular with d = |S|. For example,

• H = (Z,+) and S = {−1, 1} is an infinite line.

• H = (Zn,+) and S = {1, n− 1} is a cyclic graph.

We consider the Cayley graph generated by H = (Zn,+) and S.

Theorem 3. Define ω = exp(2jπ/n).

λk(L) = |S| −
∑
s∈S

ωks,

with eigenvector [
1 ωk . . . ω(n−1)k]T .

In general, one can consider

fk(i) = ωki.

Hence, for any x, y ∈ Zn, fk(x)fk(y) = fk(x+y). Such an fk is called a character
of the graph G.

The above theorem can be generalized to

Theorem 4. For any Cayley graph of group H and symmetric set S. Define
vector [

χ(1), χ(2), . . . , χ(n)
]T
,

where χ is a character of G. Then v is an eigenvector with eigenvalue:

|S| −
∑
s∈S

χ(s),

The nice thing about Cayley graph is that we can construct an infinitely
many d-regular graphs, called Ramanujan Graphs, which satisfy

λ2(L) ≥ d− 2
√
d− 1, λn(L) ≤ d+ 2

√
d− 1.

Hence, the convergence rate of a consensus algorithm on these graphs is given
by

ρ∗ ≤ 2

√
d− 1

d
,

which does not grow with respect to the number of node n.
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