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1 Problem Formulation

Let x ∈ Rn be the state, such that xN (0,Σ). y ∈ Rm is the sensor measurement,
where yi is the measurement from the ith sensor, such that

yi = aix+ vi.

Assume that x, v1, . . . , vm are all linearly independent and vi ∼ N (0, 1). (with-
out loss of generality we can assume Ev2i = 1, why?)

Let γi be a binary variable, such that γi = 0 if the sensor is not selected.
γi = 1 if the sensor is selected.

Hence, the estimation covariance is given by

P =

(
Σ−1 + γi

∑
i

aia
T
i

)−1
.

Possible objective functions:

• tr(P )

• log det(P ) = − log det(Σ−1+γi
∑
i aia

T
i ), log det(X) is a concave function

with respect to X ∈ Sn+.

• Why not P?

Possible constrains:

• sensor i is selected only when sensor j is selected: γi ≤ γj

• sensor i and j can not both be selection: γi + γj ≤ 1

• number constraints:
∑
i γi ≤ l.

• budget constraints:
∑
i wiγi ≤ l.

The main difficulty is that γi is discrete. In general, sensor selection problem is
NP-hard.
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2 Convex Relaxation Based Approach

We consider the following problem:

minimize
γ1,...,γm

tr(P−1)

subject to
∑
i

γi ≤ l

γi ∈ {0, 1}

A standard way to deal with binary variables is to relax it to a real number.
Relaxed Problem:

minimize
γ1,...,γm

tr(P−1)

subject to
∑
i

γi ≤ l

0 ≤ γi ≤ 1

Let the solution of the relaxed problem be γ∗1 , . . . , γ
∗
m. We can quantize the

real γ∗1 , . . . to a binary γ1, . . . , γm. Let the solution of the original problem be
γo1 , . . . , γ

o
m. Hence

tr(P−1(γ∗)) ≤ tr(P−1(γo)) ≤ tr(P−1(γ)).

As a result, we have an estimate on how good our approximation is.

3 Submodularity

Let S be a set and f : 2S → R be a function.
The function is called monotone if for all A ⊆ B ⊆ S,

f(A) ≤ f(B).

The function is called submodular if for any A,B ⊆ S,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Equivalently, if A ⊆ B and i /∈ B, then

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B).

Examples of monotone and submodular functions:

• f(S) =
√
|S| .

• Linear function: assume that every i ∈ S has a weight wi, f(A) =∑
i∈A wi.

2



• Coverage function: Let X be a weighted set and Xi ⊆ X for i = 1, . . . , n.
Let S = {1, . . . , n}. Then the following function is submodular:

f(A) =
∑

x∈
⋃

i∈AXi

w(x).

Let Y = [y1, . . . , ym]. LetA = {i1, . . . , il} ⊆ {1, . . . ,m} and YA = [yi1 , . . . , yil ].
Define the mutual information

I(X;YA) = h(X)− h(X|YA).

In general, this function is monotone but not increasing. Counterexample: y1, y2
are Bernoulli with P (yi = 1) = 0.5 and X = y1XORy2. Then X is independent
of y1 and X is independent of y2. Hence,

f(∅) = f({1}) = f({2}) = 0, f({1, 2}) = 1.

However, if yis are conditionally independent, i.e.,

P (y1, . . . , ym|X) =
∏
i

P (yi|X),

then the mutual information is monotone submodular.

3.1 Maximizing a Monotone Submodular Function

Consider the following problem:

maximize
A⊂S

f(A)

subject to |A| ≤ l

Define the optimal A for the above problem to be A∗. This problem is in general
NP-hard. However, we have a greedy algorithm:

1. Let A0 = ∅.

2. Find s = arg maxs∈S f(Ai ∪ {s}). Get Ai+1 = Ai ∪ {s}.

3. Iterate until we get Ak.

Theorem 1. Let f be a non-negative monotone submodular function, then

f(Al) ≥ (1− e)f(A∗)

Proof. Let A∗ = {s1, . . . , sk}. Hence,

f(A∗) ≤ f(A∗∪Ai) ≤ f(Ai)+
∑
si∈A∗

(f(Ai∪{si})−f(Ai)) ≤ f(Ai)+k(f(Ai+1)−f(Ai)),
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which is equivalent to

f(A∗)− f(Ai+1) ≤
(

1− 1

k

)
(f(A∗)− f(Ai)).

Hence,

f(A∗)− f(Ak) ≤
(

1− 1

k

)k
(f(A∗)− f(A0)) ≤ 1

e
f(A∗).

The last inequality holds since 1− 1/k ≤ e−1/k.

3.2 Greedy Sensor Selection

For a Gaussian distribution N (0,Σ), the entropy is given by

k

2
(1 + log(2π)) +

1

2
log det Σ,

where k is the dimension of the Gaussian variable. For our case, the mutual
information between x and YA is

1

2
log det Σ− 1

2
log detP.

Hence, we can solve the following problem using the greedy algorithm:

minimize
γ1,...,γm

log detP

subject to
∑
i

γi ≤ l

γi ∈ [0, 1]
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