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1 Problem Formulation

Let € R™ be the state, such that z (0, X). y € R™ is the sensor measurement,
where y; is the measurement from the ith sensor, such that

Yi = @i + ;.

Assume that z,v1,...,v,, are all linearly independent and v; ~ A(0,1). (with-
out loss of generality we can assume Ev? = 1, why?)

Let 7; be a binary variable, such that v; = 0 if the sensor is not selected.
~; = 1 if the sensor is selected.

Hence, the estimation covariance is given by

-1
P = <2—1 +%Zai“iT> :

Possible objective functions:
o tr(P)

e log det(P) = —log det(S7'+7; >, a;al’), log det(X) is a concave function
with respect to X € S'}.

e Why not P?
Possible constrains:
e sensor i is selected only when sensor j is selected: ; < ;
e sensor i and j can not both be selection: v; +; <1
e number constraints: Zz v < 1.
e budget constraints: Zi wiy; < L.

The main difficulty is that ; is discrete. In general, sensor selection problem is
NP-hard.



2 Convex Relaxation Based Approach

We consider the following problem:

minimize tr(P71)
Y15 Ym
subject to Z% <l
i
~vi € {0,1}

A standard way to deal with binary variables is to relax it to a real number.
Relaxed Problem:

minimize tr(P™1)
Y1 Ym
subject to Z% <l
i
0<% <1
Let the solution of the relaxed problem be ~f,...,~v%,. We can quantize the
real vf,... to a binary ~i,...,7m. Let the solution of the original problem be

Y7, .., Yp,- Hence
tr(P~H(7") < tr(PTH (7)) < te(PTH ().

As a result, we have an estimate on how good our approximation is.

3 Submodularity

Let S be a set and f : 2° — R be a function.
The function is called monotone if for all A C B C S,

f(A) < f(B).
The function is called submodular if for any A, B C S,
f(ANB)+ f(AUB) < f(A) + f(B).
Equivalently, if A C B and i ¢ B, then
fLAULY) = f(A) = f(BU{i}) — f(B).

Examples of monotone and submodular functions:

o f(5) =I5l
e Linear function: assume that every ¢ € S has a weight w;, f(A) =

Diea Wi



e Coverage function: Let X be a weighted set and X; C X fori=1,...,n.
Let S ={1,...,n}. Then the following function is submodular:

W= .

wEUiEA X

LetY = [y1,...,ym]- Let A= {ir,..., 51} C{1,...,m}and Y4 = [yiy, .-, i)
Define the mutual information

I(X:Ya) = h(X) = h(X V).

In general, this function is monotone but not increasing. Counterexample: y1, y2
are Bernoulli with P(y; = 1) = 0.5 and X = 3 XORys. Then X is independent
of y; and X is independent of y5. Hence,

fO) =1y =r{2h) =0, f{1,2}) = 1.

However, if y;s are conditionally independent, i.e.,
P(yla cee aym|X) = HP(yZ|X),
i
then the mutual information is monotone submodular.

3.1 Maximizing a Monotone Submodular Function

Consider the following problem:

maxinmize f(A4)
subject to |A] <1

Define the optimal A for the above problem to be A*. This problem is in general
NP-hard. However, we have a greedy algorithm:

1. Let Ay = 0.
2. Find s = arg max g f(A; U {s}). Get A;11 = A; U {s}.
3. Iterate until we get Ag.
Theorem 1. Let f be a non-negative monotone submodular function, then
fA) = (1 —e)f(AY)
Proof. Let A* = {s1,...,sx}. Hence,

FIAT) < F(ATUA) < F(A)+ Y (FAU{si)—F(A) < FIA)FR(S (Aip1)—f(A),

s;EA*



which is equivalent to

Fa%) = S < (1- 1) 000 - f40)

Hence,
1\* 1
7 = a0 < (1= 1) (A7) = Fdo)) < 1)
The last inequality holds since 1 — 1/k < e 1/k, O

3.2 Greedy Sensor Selection
For a Gaussian distribution N (0,Y), the entropy is given by

k 1
5(1 + log(2m)) + 3 log det X,

where k is the dimension of the Gaussian variable. For our case, the mutual
information between x and Yy, is

1 1
3 log det 3 — 3 log det P.

Hence, we can solve the following problem using the greedy algorithm:

minimize log det P
Viseees TYm
subject to Z% <l
i
vi € [0, ].}



