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1 Classical LQG Control

The system:

xk+1 = Axk +Buk + wk,

yk = Cxk + vk

x0 ∼ N (0,Σ), wk ∼ N (0, Q), vk ∼ N (0, R).
Information available for the controller at time k:

Yk = (y0, . . . , yk).

The control at time k is a function of the information Yk: uk(Yk).
The goal of a finite horizon LQG problem is to find a controller that mini-

mizes the following quadratic cost:

J(N) = min
u0,...,uN

E
N∑
k=0

(
xTkWxk + uTk Uuk

)
.

1.1 Optimal Estimator Design

Since the system is linear, the following Kalman filtering equations holds:

1. Initialization:
x̂0|−1 = 0, P0|−1 = Σ. (1)

2. Prediction:

x̂k+1|k = Ax̂k +Buk, Pk+1|k = APkA
T +Q. (2)

3. Correction:

x̂k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T +R)−1(yk+1 − Cx̂k+1|k), (3)

Pk+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k. (4)

And we have that
E(xk|Yk) = x̂k, Cov(xk|Yk) = Pk.

One important thing to notice: the Pk is independent from uk. This is because
the system is linear and hence we can subtract uk.
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1.2 Optimal Controller Design and Separation Principle

Now we can try to solve the optimal control design problem by dynamical pro-
gramming.

Define the value function

V (t) = min
ut,...,uN

E

[
N∑
k=t

(
xTkWxk + uTk Uuk

)]

Clearly
J(N) = V (0),

and
V (N) = ExTNWxN .

Now, by Bellman equation

V (t) = min
ut

E
(
xTt Wxt + uTt Uut + V (t+ 1)

)
(5)

We will guess that
V (t) = ExTt Stxt + ct (6)

To prove this, we will use induction.
Clearly SN = W and cN = 0.
Now suppose (6) holds for t+ 1, and we look at the following quantity:

E
(
xTt Wxt + uTt Uut + V (t+ 1)

)
= ExT (W +ATSt+1A)x+ tr(St+1Q) + ct+1

+ E
[
uTt (U +BTSt+1B)ut + xTt A

TSt+1But + uTt B
TSt+1Axt

]
Notice that the controller do not know xt. Hence, let us rewrite xt as

xt = x̂t + xt − x̂t = x̂t + et.

Theorem 1. 1. ek is independent of Yk and hence x̂k and uk.

2.
Ex̂Tk Sx̂k = ExTk Sxk − tr(SPk)

Proof. 1. Notice that

E(ek|Yk) = E(xk|Yk)− E(x̂k|Yk) = x̂k − x̂k = 0.

Hence, ek is linearly independent from Yk. Since ek and Yk are jointly
Gaussian, ek and Yk are independent.

2. Since

ExTk Sxk = Ex̂Tk Sx̂k + Ex̂Tk Sek + EeTk Sx̂k + EeTk Sek = Ex̂Tk Sx̂k + 0 + 0 + tr(SPk)
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Now let us look at

E
[
uTt (U +BTSt+1B)ut + xTt A

TSt+1But + uTt B
TSt+1Axt

]
= E

[
uTt (U +BTSt+1B)ut + x̂Tt A

TSt+1But + uTt B
TSt+1Ax̂t

]
= E

[
(ut − u∗t )T (U +BTSt+1B)(ut − u∗t )− x̂Tt ATSt+1B(U +BTSt+1B)−1BTSt+1Ax̂t

]
where u∗t = −(U +BTSt+1B)−1BTSt+1Ax̂t. Hence

V (t) = ExTt (W +ATSt+1A−ATSt+1B(U +BTSt+1B)−1BTSt+1A)xt

+ ct+1 + tr(ATSt+1B(U +BTSt+1B)−1BTSt+1APk) + tr(St+1Q)

Therefore

St = W +ATSt+1A−ATSt+1B(U +BTSt+1B)−1BTSt+1A, (7)

and

ct = ct+1 + tr(ATSt+1B(U +BTSt+1B)−1BTSt+1APk) + tr(St+1Q).

Thus,
J(N) = E(xT0 S0x0) + c0 = tr(S0Σ) + c0.

1.3 Infinite Horizon LQG problem

Define J as

J = lim
N→∞

J(N)

N
.

We consider the problem of finding a controller that minimizes the infinite hori-
zon cost J .

Notice that (7) is a Riccati equation. Hence, if N → ∞, then Sk converges
to S, which is the fixed solution of

S = W +ATSA−ATSB(U +BTSB)−1BTSA, (8)

The optimal controller is given by

u∗k = −(U +BTSB)−1BTSAx̂k.

2 Witsenhausen’s Counterexample

Consider x0 ∼ N (0, σ2).

1. The first player knows x0 and he computes an

x1 = f(x0),

which is a function of x0.
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2. The first player sends x1 to the second player though a noisy channel.
Therefore, the second player receives

y2 = x1 + v,

where v ∼ N (0, 1).

3. The second player then computes x2 = g(y2).

The goal is to minimize the following cost function

J = min
f,g

E k2(x0 − x1)2 + (x1 − x2)2

Alternatively, one can consider the following equivalent scheme:

1. The controller knows x0 and it computes an control u

u = f(x0),

which is a function of x0.

2. The state of the system satisfies the following update equation:

x1 = x0 + u.

3. The second player observe the system via a noisy sensor:

y2 = x1 + v,

where v ∼ N (0, 1).

4. The second player then computes the state estimate x2 = g(y2).

The goal is to minimize the following cost function

J = min
f,g

E k2u2 + (x1 − x2)2

2.1 Optimal linear strategy

We adopt the first setting. Consider that both f(x) = λx and g(x) = µx are
linear, then

J = min
λ,µ

E k2(1− λ)2x20 + (λx0 − µ(λx0 + v))2

Therefore,

µ =
λ2σ2

1 + λ2σ2
,

and

λ = arg min
λ

k2σ2(1− λ)2 +
λ2σ2

1 + λ2σ2
.

If k2σ2 = 1 and k → 0, then λ ≈ 1 and J ≈ 1.
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3 Nonlinear strategy

One can prove that for small k and k2σ2 = 0, the following design is better than
the linear design:

f(x) = σsgn(x), g(x) = σ
1− e−2σx

1 + e−2σx
.

4 Control Over Lossy Networks

The system:

xk+1 = Axk + νkBuk + wk,

yk = Cxk + vk

x0 ∼ N (0,Σ), wk ∼ N (0, Q), vk ∼ N (0, R).
νk is an i.i.d. Bernouli process with P (νk = 1) = λ.
The goal of a finite horizon LQG problem is to find a controller that mini-

mizes the following quadratic cost:

J = min
u0,...,uN

lim
N→∞

1

N
E

N∑
k=0

(
xTkWxk + νku

T
k Uuk

)
.

4.1 TCP case

Information available for the controller at time k:

Ik = (y0, . . . , yk, ν0, . . . , νk).

J is finite if and only if the following Riccati equation has a positive semidef-
inite solution:

S = W +ATSA− λATSB(U +BTSB)−1BTSA, (9)

Optimal Filter:

1. Initialization:
x̂0|−1 = 0, P0|−1 = Σ. (10)

2. Prediction:

x̂k+1|k = Ax̂k + νkBuk, Pk+1|k = APkA
T +Q. (11)

3. Correction:

x̂k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T +R)−1(yk+1 − Cx̂k+1|k), (12)

Pk+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k. (13)
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Optimal Control:
The optimal controller is given by

u∗k = −(U +BTSB)−1BTSAx̂k,

where S is the solution of (9).

4.2 UDP case

Information available for the controller at time k:

Yk = (y0, . . . , yk).

We do not know whether uk has been applied to the system or not. The control
actually affect the estimation performance. The optimal control law and the
stability of the system is unknown.
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