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The update equation of Pk:

Pk = (1− γk)h(Pk−1) + γkg(Pk−1).

{Pk} is a stochastic process depending on {γk}.

1 Critical Value

We want to characterize EPk. The main difficulty is that g is not affine, hence

EPk 6=(1− γk)h(EPk−1) + γkg(EPk−1).

As a result, we want to approximate the function g using linear functions:

0 ≤ g(X) ≤ ϕ(X,K).

1. lower bound for Pk:

Lk = (1− γk)h(Lk−1), L0 = P0.

Theorem 1. Lk ≤ Pk, for all k.

Proof. Use the monotonicity and non-negativity of h and g.

2. upper bound for Pk:

Uk = (1− γk)h(Uk−1) + γkϕ(Uk−1,K), U0 = P0.

Theorem 2. Uk ≥ Pk, for all k.

Proof. Use the monotonicity of h and g and the fact that g(X) ≤ ϕ(X,K)
for any K.
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Now we have
ELk = (1− λ)h(ELk−1),

and
EUk = (1− λ)h(EUk−1) + λϕ(EUk−1,K).

By Theorem 1 and 2, we have

ELk ≤ EPk ≤ EUk.

Now we consider whether EPk is bounded.

• If A is stable, then the following trivial estimator x̂k|k = 0 is stable. Hence
EPk is bounded.

• If A is unstable, (A,C) is observable and (A,Q1/2) is controllable:

– If λ = 1, we goes back to the classical case, EPk is bounded.

– If λ = 0, then the estimator does not receive any measurements, EPk

is unbounded.

Therefore, if A is unstable, (A,C) is observable and (A,Q1/2) is controllable,
then there exists a critical value λc, such that

• If λ > λc, then EPk is bounded.

• If λ < λc, then EPk is unbounded.

1.1 Boundedness of ELk

Theorem 3. ELk is bounded if and only if there exists an X > 0, such that

(1− λ)h(X) ≤ X. (1)

Proof. If λ = 1, then theorem is trivial. Consider the case where λ < 1.
First suppose that (1) is true. For any EL0, there exists an α ≥ 1, such that

αX ≥ EL0. Define X0 = αX and Xk = (1− λ)h(Xk−1). Therefore

Xk ≥ ELk.

On the other hand, by (1)

X1 = α(1− λ)AXA′ + (1− λ)Q = αh(X)− (1− λ)(α− 1)Q ≤ αX = X0

Thus {Xk} is decreasing(why?). Hence, Xk is bounded, which implies that
ELk is bounded.

Now suppose that ELk is bounded. As a result, let us choose L0 = 0. Hence,

L1 = (1− λ)h(EL0) ≥ 0 = L0.
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Thus {ELk} is increasing(why?). On the other hand {ELk} is bounded. Hence
the following limit is well defined

X = lim
k→∞

ELk =

∞∑
k=0

(1− λ)k+1AkQ(Ak)T .

and
X = (1− λ)h(X).

Only need to prove that X > 0. If (A,Q1/2) is controllable, then (
√

1− λA, (1−
λ)Q) is also controllable. Hence, X > 0 is full rank.

X ≥ (1− λ)h(X) = (1− λ)AXAT + (1− λ)Q,

has a positive definite solution if and only if
√

1− λA is stable, i.e.,

√
1− λρ(A) < 1 =⇒ λ > 1− 1

ρ(A)2
.

Hence, λc ≥ 1− ρ(A)−2.

1.2 Boundedness of EUk

Theorem 4. EUk is bounded if and only if there exists an X > 0, such that

(1− λ)h(X) + λϕ(X,K) ≤ X. (2)

Define

λ , inf{λ ∈ [0, 1] : there exists K,X > 0 such that Eq (2) holds}.

Then λc ≤ λ.

1.2.1 Special Case: C invertible

If C is invertible (or in general if C is of rank n), then we can choose K = C−1.
As a result,

ϕ(X,C−1) = (I − C−1C)h(X)(I − C−1C)T + C−1RC−T = C−1RC−T .

Therefore, (2) becomes

(1− λ)h(X) + λC−1RC−T ≤ X.

Therefore, if λ > 1 − ρ(A)−2, then the above equation has a positive definite
solution. Hence, λ ≤ 1− ρ(A)−2, which implies that λc = 1− ρ(A)−2.
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2 Observability in NCS

If C is invertible, then the critical value γc = 1− ρ(A)−2.
However, for general systems, this may not be true. For the following system,

one can prove that critical value is 1− ρ−4.

A =

[
ρ 0
0 −ρ

]
, C =

[
1 1

]
. (3)

The reason being that although (A,C) is observable, (A2, C) (or in general
(A2k, C)) is not observable.

• C invertible implies that we can reconstruct the state xk using only 1
measurements: x̂k|k = C−1yk.

• (A,C) observable implies that we can reconstruct the state xk using at
most n sequential measurements yk, yk−1, . . . , yk−n+1.

Theorem 5. If the linear system satisfies:

1. A is diagonalizable;

2. (Ar, C) is observable for any r ∈ R+,

then the critical value is given by

λc = 1− 1

ρ(A)2
.

Condition 1 and 2 are called non-degeneracy condition and essentially they
implies that we can reconstruct the state xk using any n measurements.

3 References on Kalman Filter with Intermit-
tent Observations

• The original paper on critical value: [6]

• The concept of non-degeneracy and its relationship with critical value: [5]

• A counter example where the critical value of an observable but degenerate
system is not the lower bound: [4]

• A special case where one can drive the pdf of Pk: [1]

• Contraction properties of Riccati and Lyapunove equation: [2]

• A survey paper on networked control problem: [3]
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