Lecture 3: Functions of Symmetric Matrices

Yilin Mo

July 2, 2015

1 Recap

- 1. Bayes Estimator:
 - (a) Initialization:

$$f(x_0|Y_{-1}) = f(x_0).$$

(b) Correction:

$$f(x_k|Y_k) = \alpha f(y_k|x_k) f(x_k|Y_{k-1}),$$

where

$$\alpha = \left(\int_{\mathbb{R}^n} f(y_k|x_k) f(x_k|Y_{k-1}) \,\mathrm{d}\, x_k\right)^{-1}.$$

The MMSE estimation can be derived as

$$\hat{x} = \mathbb{E}(x_k|Y_k) = \int_{\mathbb{R}^n} x_k f(x_k|Y_k) \,\mathrm{d}\, x_k.$$

(c) **Prediction:**

$$f(x_{k+1}|Y_k) = \int_{\mathbb{R}^n} f(x_{k+1}|x_k) f(x_k|Y_k) \,\mathrm{d}\, x_k.$$

- 2. Kalman Filter:
 - (a) **Initialization:**

$$\hat{x}_{0|-1} = 0, P_{0|-1} = \Sigma.$$
 (1)

(b) **Prediction:**

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k}, \ P_{k+1|k} = AP_{k|k}A^T + Q.$$
(2)

(c) **Correction:**

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + P_{k+1|k}C^T (CP_{k+1|k}C^T + R)^{-1} (y_{k+1} - C\hat{x}_{k+1|k}),$$
(3)
$$P_{k+1|k+1} = P_{k+1|k} - P_{k+1|k}C^T (CP_{k+1|k}C^T + R)^{-1}CP_{k+1|k}.$$
(4)

- 3. Linear Estimator:
 - (a) Initialization:

 $\hat{x}_{0|-1} = 0.$

(b) Prediction:

 $\hat{x}_{k+1|k} = A\hat{x}_{k|k}.$

(c) Correction:

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1} \left(y_{k+1} - C\hat{x}_{k+1|k} \right).$$

Estimation error covariance of the linear filter satisfies:

$$P_{0|-1} = \Sigma, P_{k+1|k} = AP_{k|k}A^T + Q,$$

$$P_{k+1|k+1} = (I - K_{k+1}C)P_{k+1|k}(I - K_{k+1}C)^T + K_{k+1}RK_{k+1}.$$

2 Kalman Filtering with Intermittent Observations: Problem Formulation

Suppose the sensor send its measurements through an erasure channel:

Figure 1: Kalman Filtering with Intermittent Observations

Let γ_k be a binary variable, such that $\gamma_k = 0$ implies that the KF does not receive y_k and $\gamma_k = 1$ implies that the KF receives y_k .

We assume that γ_k is an i.i.d. Bernoulli random variable with $P(\gamma_k = 1) = \lambda$, which is independent from $x_0, \{w_k\}, \{v_k\}$.

Hence, the information that the KF has at time k is

 $\gamma_0,\ldots,\gamma_k,\gamma_0y_0,\ldots,\gamma_ky_k.$

The optimal estimator is a time varying KF:

1. Initialization:

$$\hat{x}_{0|-1} = 0, P_{0|-1} = \Sigma.$$
 (5)

2. Prediction:

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k}, \ P_{k+1|k} = AP_{k|k}A^T + Q.$$
(6)

3. Correction:

$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + \frac{\gamma_{k+1}P_{k+1|k}C^T(CP_{k+1|k}C^T + R)^{-1}(y_{k+1} - C\hat{x}_{k+1|k})}{(7)}$$

$$P_{k+1|k+1} = P_{k+1|k} - \frac{\gamma_{k+1}P_{k+1|k}C^T(CP_{k+1|k}C^T + R)^{-1}CP_{k+1|k}}{(8)}$$

To simplify notations, we define

 $P_k \triangleq P_{k|k}.$

Furthermore, define

$$h(X) \triangleq AXA^T + Q, \ g(X) \triangleq h(X) - h(X)C^T(Ch(X)C^T + R)^{-1}Ch(X).$$

As a result,

$$P_k = \begin{cases} h(P_{k-1}) & \text{if } \gamma_k = 0\\ g(P_{k-1}) & \text{if } \gamma_k = 1 \end{cases}$$

h is called a Lyapunov equation and g is called a discrete-time algebraic Riccati equation.

3 Properties of Discrete-time Algebraic Riccati Equation

3.1 Symmetric Matrix

Let \mathbb{S}^n be the space of real symmetric n by n matrices. \mathcal{S}^n is a linear space with dimension n(n+1)/2.

Definition 1. $\mathbb{S}^n_+ \subset \mathbb{S}^n$ is the set of all positive semidefinite matrices. $\mathcal{S}^n_{++} \subset \mathbb{S}^n$ is the set of all positive definite matrices.

- 1. For any $X, Y \in \mathbb{S}^n_+$, $\alpha, \beta \ge 0$, $\alpha X + \beta Y \in \mathbb{S}^n_+$. \mathbb{S}^n_+ is a convex cone.
- 2. $\mathbb{S}^n_+ \cap \left(-\mathbb{S}^n_+\right) = \{0\}.$

 \mathbb{S}^n_+ induces a partial order on $\mathbb{S}^n {:}$

$$X \ge Y \implies X - Y \in \mathbb{S}^n_+.$$

- 1. $0 \in \mathbb{S}^n_+ \implies X \ge X$.
- 2. $\mathbb{S}^n_+ \cap (-\mathbb{S}^n_+) = \{0\}$ implies that if $X \ge Y$ and $Y \ge X$, then X = Y.
- 3. Convexity implies that if $X \ge Y$ and $Y \ge Z$, then $X \ge Z$.

However, it is not a total order:

$$X = 0, Y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Neither $X \ge Y$ nor $Y \ge X$.

Theorem 1. If the sequence $\{X_k\}$ is monotonically increasing, i.e., $X_{k+1} \ge X_k$, and there exists an M, such that for all $k, X_k \le M$, then the following entrywise limit is well-defined

$$\lim_{k \to \infty} X_k = X_k$$

Proof. • Diagonal Elements:

 $X_{k+1}(i,i) \ge X_k(i,i)$ implies that the diagonal element $X_{k+1}(i,i) \ge X_k(i,i)$. Hence, $X_k(i,i)$ is increasing and is bounded by M(i,i). Therefore $X_k(i,i)$ converges.

• Off-diagonal Elements:

Consider $k_1 \ge k_2$, then $X_{k_1} \ge X_{k_2}$, which implies that all principal minor is non-negative, i.e.,

$$|X_{k_1}(i,j) - X_{k_2}(i,j)|^2 \le |X_{k_1}(i,i) - X_{k_2}(i,i)| |X_{k_1}(j,j) - X_{k_2}(j,j)|$$

Use Cauchy Criterion to prove that the off-diagonal elements also converge.

3.2 Functions on \mathbb{S}^n

Definition 2. A function $f : \mathbb{S}^n \to \mathbb{S}^n$ is monotonically increasing if for any $X \ge Y$, $f(X) \ge f(Y)$. A function f is decreasing if -f is increasing.

Definition 3. A function $f : \mathbb{S}^n \to \mathbb{S}^n$ is convex if for any X, Y and $\alpha, \beta > 0, \alpha + \beta = 1$, the following inequality holds

$$\alpha f(X) + \beta f(Y) \ge f(\alpha X + \beta Y).$$

A function f is concave if -f is convex.

Some functions:

1. Affine function:

$$h(X) = AXA^T + Q.$$

h(X) is increasing, convex and concave.

2. Inverse function:

 $f(X) = X^{-1}.$

f(X) is decreasing and convex on \mathbb{S}^n_{++} .

Proof. Consider $X, Y \in \mathbb{S}_{++}^n$. There exists an orthogonal matrix Q_1 , such that

$$Q_1 X Q_1^T = \Lambda_X,$$

where Λ_X is a diagonal matrix. Define $\Lambda_X^{1/2}$ as the square root of Λ_X . Hence,

$$Q_1 \Lambda_X Q_1^T \times Q_1 \Lambda_X Q_1^T = X.$$

Let $X^{1/2} = Q_1 \Lambda_X^{1/2} Q_1^T$. Then there exists another orthogonal matrix Q_2 , such that

$$Q_2 X^{-1/2} Y X^{-1/2} Q_2^T = \Lambda_Y,$$

On the other hand

$$Q_2 X^{-1/2} X X^{-1/2} Q_2^T = I.$$

The proof can be done by using the matrix $Q_2 X^{-1/2}$ to diagonalize both X and Y and use the fact that 1/x is decreasing and concave on \mathbb{R}^+

3. Discrete-time algebraic Riccati equation:

Matrix Inversion Lemma:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$
 (9)

Therefore,

$$g(X) = [(h(X))^{-1} + C^T R^{-1} C]^{-1}.$$

g(X) is increasing, concave and non-negative on $\mathbb{S}^n_+.$ (why?)

Another way of thinking:

Consider the update equation of a linear filter:

$$\varphi(X,K) = (I - KC)h(X)(I - KC)^T + KRK^T$$
$$= K(Ch(X)C^T + R)K^T - KCh(X) - h(X)C^T K^T + h(X).$$

Define $K^* = h(X)C^T(Ch(X)C^T + R)^{-1}$, then

$$\varphi(X, K) = g(X) + (K - K^*)(Ch(X)C^T + R)(K - K^*)^T$$

Thus

$$g(X) = \min_{K} \varphi(X, K).$$

Fix K, $\varphi(X, K)$ is increasing and affine. Thus, g(X) is increasing, concave and non-negative on \mathbb{S}^n_+ . (why?)