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1 Recap

1. Bayes Estimator:

(a) Initialization:
f(x0|Y−1) = f(x0).

(b) Correction:

f(xk|Yk) = αf(yk|xk)f(xk|Yk−1),

where

α =

(∫
Rn

f(yk|xk)f(xk|Yk−1) dxk

)−1
.

The MMSE estimation can be derived as

x̂ = E(xk|Yk) =

∫
Rn

xkf(xk|Yk) dxk.

(c) Prediction:

f(xk+1|Yk) =

∫
Rn

f(xk+1|xk)f(xk|Yk) dxk.

2. Kalman Filter:

(a) Initialization:
x̂0|−1 = 0, P0|−1 = Σ. (1)

(b) Prediction:

x̂k+1|k = Ax̂k|k, Pk+1|k = APk|kA
T +Q. (2)

(c) Correction:

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T +R)−1(yk+1 − Cx̂k+1|k),
(3)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k. (4)
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3. Linear Estimator:

(a) Initialization:
x̂0|−1 = 0.

(b) Prediction:
x̂k+1|k = Ax̂k|k.

(c) Correction:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − Cx̂k+1|k

)
.

Estimation error covariance of the linear filter satisfies:

P0|−1 = Σ, Pk+1|k = APk|kA
T +Q,

Pk+1|k+1 = (I −Kk+1C)Pk+1|k(I −Kk+1C)T +Kk+1RKk+1.

2 Kalman Filtering with Intermittent Observa-
tions: Problem Formulation

Suppose the sensor send its measurements through an erasure channel:

Sensor KFγk

Figure 1: Kalman Filtering with Intermittent Observations

Let γk be a binary variable, such that γk = 0 implies that the KF does not
receive yk and γk = 1 implies that the KF receives yk.

We assume that γk is an i.i.d. Bernoulli random variable with P (γk = 1) = λ,
which is independent from x0, {wk}, {vk}.

Hence, the information that the KF has at time k is

γ0, . . . , γk, γ0y0, . . . , γkyk.

The optimal estimator is a time varying KF:

1. Initialization:
x̂0|−1 = 0, P0|−1 = Σ. (5)

2. Prediction:

x̂k+1|k = Ax̂k|k, Pk+1|k = APk|kA
T +Q. (6)
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3. Correction:

x̂k+1|k+1 = x̂k+1|k + γk+1Pk+1|kC
T (CPk+1|kC

T +R)−1(yk+1 − Cx̂k+1|k),
(7)

Pk+1|k+1 = Pk+1|k − γk+1Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k. (8)

To simplify notations, we define

Pk , Pk|k.

Furthermore, define

h(X) , AXAT +Q, g(X) , h(X)− h(X)CT (Ch(X)CT +R)−1Ch(X).

As a result,

Pk =

{
h(Pk−1) if γk = 0

g(Pk−1) if γk = 1

h is called a Lyapunov equation and g is called a discrete-time algebraic Riccati
equation.

3 Properties of Discrete-time Algebraic Riccati
Equation

3.1 Symmetric Matrix

Let Sn be the space of real symmetric n by n matrices. Sn is a linear space
with dimension n(n+ 1)/2.

Definition 1. Sn+ ⊂ Sn is the set of all positive semidefinite matrices. Sn++ ⊂ Sn
is the set of all positive definite matrices.

1. For any X,Y ∈ Sn+, α, β ≥ 0, αX + βY ∈ Sn+. Sn+ is a convex cone.

2. Sn+
⋂(
−Sn+

)
= {0}.

Sn+ induces a partial order on Sn:

X ≥ Y =⇒ X − Y ∈ Sn+.

1. 0 ∈ Sn+ =⇒ X ≥ X.

2. Sn+
⋂(
−Sn+

)
= {0} implies that if X ≥ Y and Y ≥ X, then X = Y .

3. Convexity implies that if X ≥ Y and Y ≥ Z, then X ≥ Z.
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However, it is not a total order:

X = 0, Y =

[
1 0
0 −1

]
.

Neither X ≥ Y nor Y ≥ X.

Theorem 1. If the sequence {Xk} is monotonically increasing, i.e., Xk+1 ≥
Xk, and there exists an M , such that for all k, Xk ≤ M , then the following
entrywise limit is well-defined

lim
k→∞

Xk = X.

Proof. • Diagonal Elements:

Xk+1(i, i) ≥ Xk(i, i) implies that the diagonal elementXk+1(i, i) ≥ Xk(i, i).
Hence, Xk(i, i) is increasing and is bounded by M(i, i). Therefore Xk(i, i)
converges.

• Off-diagonal Elements:

Consider k1 ≥ k2, then Xk1
≥ Xk2

, which implies that all principal minor
is non-negative, i.e.,

|Xk1
(i, j)−Xk2

(i, j)|2 ≤ |Xk1
(i, i)−Xk2

(i, i)||Xk1
(j, j)−Xk2

(j, j)|

Use Cauchy Criterion to prove that the off-diagonal elements also con-
verge.

3.2 Functions on Sn

Definition 2. A function f : Sn → Sn is monotonically increasing if for any
X ≥ Y , f(X) ≥ f(Y ). A function f is decreasing if −f is increasing.

Definition 3. A function f : Sn → Sn is convex if for any X, Y and α, β >
0, α+ β = 1, the following inequality holds

αf(X) + βf(Y ) ≥ f(αX + βY ).

A function f is concave if −f is convex.

Some functions:

1. Affine function:
h(X) = AXAT +Q.

h(X) is increasing, convex and concave.

2. Inverse function:
f(X) = X−1.

f(X) is decreasing and convex on Sn++.
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Proof. Consider X,Y ∈ Sn++. There exists an orthogonal matrix Q1, such
that

Q1XQ
T
1 = ΛX ,

where ΛX is a diagonal matrix. Define Λ
1/2
X as the square root of ΛX .

Hence,
Q1ΛXQ

T
1 ×Q1ΛXQ

T
1 = X.

Let X1/2 = Q1Λ
1/2
X QT

1 . Then there exists another orthogonal matrix Q2,
such that

Q2X
−1/2Y X−1/2QT

2 = ΛY ,

On the other hand
Q2X

−1/2XX−1/2QT
2 = I.

The proof can be done by using the matrix Q2X
−1/2 to diagonalize both

X and Y and use the fact that 1/x is decreasing and concave on R+

3. Discrete-time algebraic Riccati equation:

Matrix Inversion Lemma:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (9)

Therefore,

g(X) =
[
(h(X))−1 + CTR−1C

]−1
.

g(X) is increasing, concave and non-negative on Sn+. (why?)

Another way of thinking:

Consider the update equation of a linear filter:

ϕ(X,K) = (I −KC)h(X)(I −KC)T +KRKT

= K(Ch(X)CT +R)KT −KCh(X)− h(X)CTKT + h(X).

Define K∗ = h(X)CT (Ch(X)CT +R)−1, then

ϕ(X,K) = g(X) + (K −K∗)(Ch(X)CT +R)(K −K∗)T

Thus
g(X) = min

K
ϕ(X,K).

Fix K, ϕ(X,K) is increasing and affine. Thus, g(X) is increasing, concave
and non-negative on Sn+. (why?)
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