Lecture 3: Functions of Symmetric Matrices

Yilin Mo

July 2, 2015

1 Recap

1. Bayes Estimator:
(a) Initialization:

$$
f\left(x_{0} \mid Y_{-1}\right)=f\left(x_{0}\right)
$$

(b) Correction:

$$
f\left(x_{k} \mid Y_{k}\right)=\alpha f\left(y_{k} \mid x_{k}\right) f\left(x_{k} \mid Y_{k-1}\right)
$$

where

$$
\alpha=\left(\int_{\mathbb{R}^{n}} f\left(y_{k} \mid x_{k}\right) f\left(x_{k} \mid Y_{k-1}\right) \mathrm{d} x_{k}\right)^{-1}
$$

The MMSE estimation can be derived as

$$
\hat{x}=\mathbb{E}\left(x_{k} \mid Y_{k}\right)=\int_{\mathbb{R}^{n}} x_{k} f\left(x_{k} \mid Y_{k}\right) \mathrm{d} x_{k}
$$

(c) Prediction:

$$
f\left(x_{k+1} \mid Y_{k}\right)=\int_{\mathbb{R}^{n}} f\left(x_{k+1} \mid x_{k}\right) f\left(x_{k} \mid Y_{k}\right) \mathrm{d} x_{k}
$$

2. Kalman Filter:
(a) Initialization:

$$
\begin{equation*}
\hat{x}_{0 \mid-1}=0, P_{0 \mid-1}=\Sigma . \tag{1}
\end{equation*}
$$

(b) Prediction:

$$
\begin{equation*}
\hat{x}_{k+1 \mid k}=A \hat{x}_{k \mid k}, P_{k+1 \mid k}=A P_{k \mid k} A^{T}+Q \tag{2}
\end{equation*}
$$

(c) Correction:

$$
\begin{align*}
& \hat{x}_{k+1 \mid k+1}=\hat{x}_{k+1 \mid k}+P_{k+1 \mid k} C^{T}\left(C P_{k+1 \mid k} C^{T}+R\right)^{-1}\left(y_{k+1}-C \hat{x}_{k+1 \mid k}\right), \\
& P_{k+1 \mid k+1}=P_{k+1 \mid k}-P_{k+1 \mid k} C^{T}\left(C P_{k+1 \mid k} C^{T}+R\right)^{-1} C P_{k+1 \mid k} \tag{3}
\end{align*}
$$

3. Linear Estimator:
(a) Initialization:

$$
\hat{x}_{0 \mid-1}=0 .
$$

(b) Prediction:

$$
\hat{x}_{k+1 \mid k}=A \hat{x}_{k \mid k} .
$$

(c) Correction:

$$
\hat{x}_{k+1 \mid k+1}=\hat{x}_{k+1 \mid k}+K_{k+1}\left(y_{k+1}-C \hat{x}_{k+1 \mid k}\right)
$$

Estimation error covariance of the linear filter satisfies:

$$
\begin{aligned}
P_{0 \mid-1} & =\Sigma, P_{k+1 \mid k}=A P_{k \mid k} A^{T}+Q \\
P_{k+1 \mid k+1} & =\left(I-K_{k+1} C\right) P_{k+1 \mid k}\left(I-K_{k+1} C\right)^{T}+K_{k+1} R K_{k+1}
\end{aligned}
$$

2 Kalman Filtering with Intermittent Observations: Problem Formulation

Suppose the sensor send its measurements through an erasure channel:

Figure 1: Kalman Filtering with Intermittent Observations
Let γ_{k} be a binary variable, such that $\gamma_{k}=0$ implies that the KF does not receive y_{k} and $\gamma_{k}=1$ implies that the KF receives y_{k}.

We assume that γ_{k} is an i.i.d. Bernoulli random variable with $P\left(\gamma_{k}=1\right)=\lambda$, which is independent from $x_{0},\left\{w_{k}\right\},\left\{v_{k}\right\}$.

Hence, the information that the KF has at time k is

$$
\gamma_{0}, \ldots, \gamma_{k}, \gamma_{0} y_{0}, \ldots, \gamma_{k} y_{k}
$$

The optimal estimator is a time varying KF:

1. Initialization:

$$
\begin{equation*}
\hat{x}_{0 \mid-1}=0, P_{0 \mid-1}=\Sigma \tag{5}
\end{equation*}
$$

2. Prediction:

$$
\begin{equation*}
\hat{x}_{k+1 \mid k}=A \hat{x}_{k \mid k}, P_{k+1 \mid k}=A P_{k \mid k} A^{T}+Q . \tag{6}
\end{equation*}
$$

3. Correction:

$$
\begin{align*}
& \hat{x}_{k+1 \mid k+1}=\hat{x}_{k+1 \mid k}+\gamma_{k+1} P_{k+1 \mid k} C^{T}\left(C P_{k+1 \mid k} C^{T}+R\right)^{-1}\left(y_{k+1}-C \hat{x}_{k+1 \mid k}\right), \tag{7}\\
& P_{k+1 \mid k+1}=P_{k+1 \mid k}-\gamma_{k+1} P_{k+1 \mid k} C^{T}\left(C P_{k+1 \mid k} C^{T}+R\right)^{-1} C P_{k+1 \mid k} . \tag{8}
\end{align*}
$$

To simplify notations, we define

$$
P_{k} \triangleq P_{k \mid k}
$$

Furthermore, define

$$
h(X) \triangleq A X A^{T}+Q, g(X) \triangleq h(X)-h(X) C^{T}\left(C h(X) C^{T}+R\right)^{-1} C h(X) .
$$

As a result,

$$
P_{k}= \begin{cases}h\left(P_{k-1}\right) & \text { if } \gamma_{k}=0 \\ g\left(P_{k-1}\right) & \text { if } \gamma_{k}=1\end{cases}
$$

h is called a Lyapunov equation and g is called a discrete-time algebraic Riccati equation.

3 Properties of Discrete-time Algebraic Riccati Equation

3.1 Symmetric Matrix

Let \mathbb{S}^{n} be the space of real symmetric n by n matrices. \mathcal{S}^{n} is a linear space with dimension $n(n+1) / 2$.

Definition 1. $\mathbb{S}_{+}^{n} \subset \mathbb{S}^{n}$ is the set of all positive semidefinite matrices. $\mathcal{S}_{++}^{n} \subset \mathbb{S}^{n}$ is the set of all positive definite matrices.

1. For any $X, Y \in \mathbb{S}_{+}^{n}, \alpha, \beta \geq 0, \alpha X+\beta Y \in \mathbb{S}_{+}^{n}$. \mathbb{S}_{+}^{n} is a convex cone.
2. $\mathbb{S}_{+}^{n} \bigcap\left(-\mathbb{S}_{+}^{n}\right)=\{0\}$.
\mathbb{S}_{+}^{n} induces a partial order on \mathbb{S}^{n} :

$$
X \geq Y \Longrightarrow X-Y \in \mathbb{S}_{+}^{n}
$$

1. $0 \in \mathbb{S}_{+}^{n} \Longrightarrow X \geq X$.
2. $\mathbb{S}_{+}^{n} \cap\left(-\mathbb{S}_{+}^{n}\right)=\{0\}$ implies that if $X \geq Y$ and $Y \geq X$, then $X=Y$.
3. Convexity implies that if $X \geq Y$ and $Y \geq Z$, then $X \geq Z$.

However, it is not a total order:

$$
X=0, Y=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Neither $X \geq Y$ nor $Y \geq X$.
Theorem 1. If the sequence $\left\{X_{k}\right\}$ is monotonically increasing, i.e., $X_{k+1} \geq$ X_{k}, and there exists an M, such that for all $k, X_{k} \leq M$, then the following entrywise limit is well-defined

$$
\lim _{k \rightarrow \infty} X_{k}=X
$$

Proof. - Diagonal Elements:
$X_{k+1}(i, i) \geq X_{k}(i, i)$ implies that the diagonal element $X_{k+1}(i, i) \geq X_{k}(i, i)$. Hence, $X_{k}(i, i)$ is increasing and is bounded by $M(i, i)$. Therefore $X_{k}(i, i)$ converges.

- Off-diagonal Elements:

Consider $k_{1} \geq k_{2}$, then $X_{k_{1}} \geq X_{k_{2}}$, which implies that all principal minor is non-negative, i.e.,

$$
\left|X_{k_{1}}(i, j)-X_{k_{2}}(i, j)\right|^{2} \leq\left|X_{k_{1}}(i, i)-X_{k_{2}}(i, i)\right|\left|X_{k_{1}}(j, j)-X_{k_{2}}(j, j)\right|
$$

Use Cauchy Criterion to prove that the off-diagonal elements also converge.

3.2 Functions on \mathbb{S}^{n}

Definition 2. A function $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is monotonically increasing if for any $X \geq Y, f(X) \geq f(Y)$. A function f is decreasing if $-f$ is increasing.
Definition 3. A function $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is convex if for any X, Y and $\alpha, \beta>$ $0, \alpha+\beta=1$, the following inequality holds

$$
\alpha f(X)+\beta f(Y) \geq f(\alpha X+\beta Y)
$$

A function f is concave if $-f$ is convex.
Some functions:

1. Affine function:

$$
h(X)=A X A^{T}+Q
$$

$h(X)$ is increasing, convex and concave.
2. Inverse function:

$$
f(X)=X^{-1}
$$

$f(X)$ is decreasing and convex on \mathbb{S}_{++}^{n}.

Proof. Consider $X, Y \in \mathbb{S}_{++}^{n}$. There exists an orthogonal matrix Q_{1}, such that

$$
Q_{1} X Q_{1}^{T}=\Lambda_{X}
$$

where Λ_{X} is a diagonal matrix. Define $\Lambda_{X}^{1 / 2}$ as the square root of Λ_{X}. Hence,

$$
Q_{1} \Lambda_{X} Q_{1}^{T} \times Q_{1} \Lambda_{X} Q_{1}^{T}=X
$$

Let $X^{1 / 2}=Q_{1} \Lambda_{X}^{1 / 2} Q_{1}^{T}$. Then there exists another orthogonal matrix Q_{2}, such that

$$
Q_{2} X^{-1 / 2} Y X^{-1 / 2} Q_{2}^{T}=\Lambda_{Y}
$$

On the other hand

$$
Q_{2} X^{-1 / 2} X X^{-1 / 2} Q_{2}^{T}=I
$$

The proof can be done by using the matrix $Q_{2} X^{-1 / 2}$ to diagonalize both X and Y and use the fact that $1 / x$ is decreasing and concave on \mathbb{R}^{+}
3. Discrete-time algebraic Riccati equation:

Matrix Inversion Lemma:

$$
\begin{equation*}
(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1} \tag{9}
\end{equation*}
$$

Therefore,

$$
g(X)=\left[(h(X))^{-1}+C^{T} R^{-1} C\right]^{-1}
$$

$g(X)$ is increasing, concave and non-negative on \mathbb{S}_{+}^{n}. (why?)
Another way of thinking:
Consider the update equation of a linear filter:

$$
\begin{aligned}
\varphi(X, K) & =(I-K C) h(X)(I-K C)^{T}+K R K^{T} \\
& =K\left(C h(X) C^{T}+R\right) K^{T}-K C h(X)-h(X) C^{T} K^{T}+h(X)
\end{aligned}
$$

Define $K^{*}=h(X) C^{T}\left(C h(X) C^{T}+R\right)^{-1}$, then

$$
\varphi(X, K)=g(X)+\left(K-K^{*}\right)\left(C h(X) C^{T}+R\right)\left(K-K^{*}\right)^{T}
$$

Thus

$$
g(X)=\min _{K} \varphi(X, K)
$$

Fix $K, \varphi(X, K)$ is increasing and affine. Thus, $g(X)$ is increasing, concave and non-negative on \mathbb{S}_{+}^{n}. (why?)

