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1 Static State Estimation

Let x ∈ Rn be the states and y ∈ Rm be the sensor measurements. The a-priori
pdf of x is f(x) and the conditional pdf of y given x is f(y|x). Hence,

f(x|y) =
f(x, y)

f(y)
=

f(x)f(y|x)∫
Rn f(x)f(y|x) dx

.

The minimum mean square error (MMSE) estimator is given by

x̂ = E(x|y) =

∫
Rn

xf(x|y) dx.

2 State Estimation of Hidden Markov Chain
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Figure 1: Hidden Markov Model

Markov Property: The joint pdf of x0, . . . , xk, y0, . . . , yk satisfies:

f(x0, . . . , xk, y0, . . . , yk) = f(x0)

k−1∏
i=0

f(xi+1|xi)
k∏

i=0

f(yi|xi).

To simplify notation, define Yk = (y0, . . . , yk) and Y−1 = ∅.
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2.1 Naive Estimator

We can still use the conditional expectation to compute the MMSE estimator:

x̂k|k = E(xk|Yk). (1)

Drawbacks:
Estimator (1) is not recursive. We need to keep the whole history of Yk.

2.2 Bayes Filter

Consider the conditional pdf f(xk|Yk), by Bayes rule:

f(xk|Yk) =
f(xk, yk|Yk−1)

f(yk|Yk−1)
=
f(yk|xk, Yk−1)f(xk|Yk−1)

f(yk|Yk−1)

1. By Markov property:

f(yk|xk, Yk−1) = f(yk|xk).

2. By law of total probability and Markov property:

f(xk|Yk−1) =

∫
Rn

f(xk|xk−1, Yk−1)f(xk−1|Yk−1) dxk−1

=

∫
Rn

f(xk|xk−1)f(xk−1|Yk−1) dxk−1 (2)

3. By law of total probability and Markov property:

f(yk|Yk−1) =

∫
Rn

f(yk|xk, Yk−1)f(xk|Yk−1) dxk

=

∫
Rn

f(yk|xk)f(xk|Yk−1) dxk.

As a result, the Bayes filter can be written in a recursive fashion as:

1. Initialization:
f(x0|Y−1) = f(x0).

2. Correction:
f(xk|Yk) = αf(yk|xk)f(xk|Yk−1),

where

α =

(∫
Rn

f(yk|xk)f(xk|Yk−1) dxk

)−1
.

The MMSE estimation can be derived as

x̂ = E(xk|Yk) =

∫
Rn

xkf(xk|Yk) dxk.
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3. Prediction:

f(xk+1|Yk) =

∫
Rn

f(xk+1|xk)f(xk|Yk) dxk.

Drawbacks:
we need to store the conditional pdf f(xk|Yk) or f(xk|Yk−1).
Possible Solutions:

• Assuming that the conditional pdf is Gaussian. Hence, only need to track
the mean and covariance (Extended Kalman Filter).

• Approximating the conditional pdf by Monte Carlo sampling (Particle
filter)

3 Estimation of Linear Gaussian System: Kalman
Filter

Consider the following linear Gaussian system:

xk+1 = Axk + wk,

yk = Cxk + vk.

where the process noise wk is i.i.d. Gaussian noise with mean 0 and covarianceQ.
The measurement noise vk is i.i.d. Gaussian noise with mean 0 and covariance
R and the initial condition x0 is Gaussian with mean 0 and covariance Σ. The
random variables {x0, w0, . . . , wk, v0, . . . , vk} are jointly independent.

Observation: (x0, . . . , xk, y0, . . . , yk) are jointly Gaussian. Hence, the con-
ditional pdf f(xk|Yk) and f(xk|Yk−1) is also Gaussian. As a result, we only
need to keep track of

x̂k|k = E(xk|Yk), x̂k|k−1 = E(xk|Yk−1),

Pk|k = Cov(xk|Yk) = E
(
(xk − x̂k|k)(xk − x̂k|k)TYk

)
,

Pk|k−1 = Cov(xk|Yk−1) = E
(
(xk − x̂k|k−1)(xk − x̂k|k−1)TYk−1

)
.

1. Initialization:
x̂0|−1 = 0, P0|−1 = Σ. (3)

2. Prediction: Take the conditional expectation on both sides of xk+1 =
Axk + wk,

E(xk+1|Yk) = AE(xk|Yk) + E(wk|Yk).

The second term on the RHS is 0 (why?). Hence

x̂k+1|k = Ax̂k|k. (4)

Therefore,
xk+1 − x̂k+1|k = A(xk − x̂k|k) + wk,
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which implies that

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T = A(xk − x̂k|k)(xk − x̂k|k)TAT + wkw
T
k

+A(xk − x̂k|k)wT
k + wk(xk − x̂k|k)TAT .

Take the conditional expectation on Yk on both sides. Notice that the
conditional expectation of the last two terms on the RHS is 0 (why?).
Hence

Pk+1|k = APk|kA
T +Q. (5)

3. Correction: We need the following theorem:

Theorem 1. Assume that the joint pdf of x, y satisfies

f

(
x
y

)
∼ N

([
µx

µy

]
,

[
Σxx Σxy

ΣT
xy Σyy

])
,

then the following equalities hold:

E(x|y) = µx + ΣxyΣ−1yy (y − µy),

Cov(x|y) = Σxx − ΣxyΣ−1yy ΣT
xy.

By (4) and (5), we already know that

E(xk+1|Yk) = x̂k+1|k, Cov(xk+1|Yk) = Pk+1|k.

Now take the conditional expectation on Yk on both sides of yk+1 =
Cxk+1 + vk+1, we get

E(yk+1|Yk) = Cx̂k+1|k.

Similar to the proof of (5), we have

Cov(yk+1|Yk) = CPk+1|kC
T +R,

Cov(xk+1, yk+1|Yk) = E
(
(xk+1 − x̂k+1|k)(yk+1 − E(yk+1|Yk))T |Yk

)
= Pk+1|kC

T .

Therefore, the joint pdf of xk+1, yk+1 satisfies

f

([
xk+1

yk+1

]∣∣∣∣Yk) ∼ N ([ x̂k+1|k
Cx̂k+1|k

]
,

[
Pk+1|k Pk+1|kC

T

CPk+1|k CPk+1|kC
T +R

])
.

Using Theorem 1, we get the correction equations:

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T (CPk+1|kC

T +R)−1(yk+1 − Cx̂k+1|k),
(6)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T (CPk+1|kC

T +R)−1CPk+1|k. (7)
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Equation (3), (4), (5), (6) and (7) are called Kalman filter.
Observations:

• Pk|k, Pk+1|k do not depend on Yk. Hence, they can be computed off-line.

• Define
Kk , Pk|k−1C

T (CPk|k−1C
T +R)−1.

Assume that C is invertible.

– If Pk|k−1 � R, then Kk ≈ C−1 and

x̂k|k ≈ x̂k|k−1 + C−1(yk − Cx̂k|k−1) = C−1yk.

If the prediction is inaccurate, then we will trust the measurement.

– If Pk|k−1 � R, then Kk ≈ 0 and

x̂k|k ≈ x̂k|k−1.

If the measurement is inaccurate, then we will trust the prediction.

KF can be seen as an optimal way to put weights on the current measure-
ment and the past measurements (predicted state estimate).

Drawbacks:
We still need to compute Pk|k, which involves matrix multiplication and

inversion.
However, we can avoid computing Pk|k, by the following theorems:

Theorem 2. Assuming that (A,C) is observable and (A,Q1/2) is controllable,
then Pk|k−1 converges to a unique value P , regardless of the initial condition Σ.

Denote K , limk→∞Kk = PCT (CPCT +R)−1.

Theorem 3. Consider the following linear estimator using gain matrix K:

x̃k+1|k = Ax̃k|k, x̃k+1|k+1 = x̃k+1|k +K(yk+1 − Cx̃k+1|k), (8)

with initial condition x̃0|−1 = 0. Define

P̃k|k = Cov(xk − x̃k|k|Yk), P̃k+1|k = Cov(xk+1 − x̃k+1|k|Yk),

then the linear estimator achieves the same asymptotic performance as the
Kalman filter, i.e.,

lim
k→∞

P̃k+1|k = P, lim
k→∞

P̃k|k = lim
k→∞

Pk|k.

In practice, we can compute P (remember that Pk|k can be computed off-
line) and K off-line and use the linear estimator (8) instead of the Kalman
filter.
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