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1 Static State Estimation

Let x € R™ be the states and y € R™ be the sensor measurements. The a-priori
pdf of x is f(x) and the conditional pdf of y given z is f(y|z). Hence,
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The minimum mean square error (MMSE) estimator is given by
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2 State Estimation of Hidden Markov Chain

Hidden: 0 (1) (22 (23)

Observed: @ @

Figure 1: Hidden Markov Model

Markov Property: The joint pdf of zq,...,xk, Yo, ..., yr satisfies:
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To simplify notation, define Y3 = (yo,...,yx) and Y_; = (.



2.1 Naive Estimator

We can still use the conditional expectation to compute the MMSE estimator:
jjk|k = E($k|Yk). (1)

Drawbacks:
Estimator (1) is not recursive. We need to keep the whole history of Y.

2.2 Bayes Filter
Consider the conditional pdf f(zx|Y%), by Bayes rule:

~ f@rykl Y1) f(yklze, Y1) f(ox|Ye-1)
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1. By Markov property:

Fyrlor, Yi—1) = f(yrlzr).

2. By law of total probability and Markov property:

fle|Ye—1) = f@rlep—1, Y1) f(@r—1]Yr—1) dzr—1
RTI,

= - f@rlep—1)f(xr—1Yr—1)dzr—1 (2)

3. By law of total probability and Markov property:
FelYe-1) = [ flyrlor, Yeo1) f(zk|Yio1) d 2y
Rn

= e fyrler) f (2] Yi—1) dap.

As a result, the Bayes filter can be written in a recursive fashion as:

1. Initialization:

f(zolY-1) = f(z0)-

2. Correction:
F@elYe) = oof (yelzr) f (2] Y1),

where )
o= < - Fyrlzee) f(2e|Yie—1) dxk,) .

The MMSE estimation can be derived as

n

T = E($k|Yk) = / xkf($k|yk)dl‘]€.



3. Prediction:

J(@rg1|Ye) = . f@rilzn) f (x| Ye) d og.

Drawbacks:
we need to store the conditional pdf f(zx|Yy) or f(zk|Yi—1).
Possible Solutions:

e Assuming that the conditional pdf is Gaussian. Hence, only need to track
the mean and covariance (Extended Kalman Filter).

e Approximating the conditional pdf by Monte Carlo sampling (Particle
filter)

3 Estimation of Linear Gaussian System: Kalman
Filter

Consider the following linear Gaussian system:

Tpt1 = Axg + wg,
yr = Czp + vg.
where the process noise wy, isi.i.d. Gaussian noise with mean 0 and covariance Q.
The measurement noise vy is i.i.d. Gaussian noise with mean 0 and covariance
R and the initial condition x( is Gaussian with mean 0 and covariance Y. The
random variables {xo, wo, ..., Wk, vo, ..., vk} are jointly independent.
Observation: (zo,...,Zg, Yo, --,Yx) are jointly Gaussian. Hence, the con-
ditional pdf f(xg|Y:) and f(zx|Ye—1) is also Gaussian. As a result, we only
need to keep track of

Trpe = E(zk|Ya), Thjp—1 = E(wx|Yi-1),
Py = Cov(ax|Vi) = E ((zr — Zie) (@ — &) V)
Pyjg—1 = Cov(zy|Yee1) = E ((z — Eppp—1) @k — Bgp—1)” Yio1) -

1. Initialization:
.i'ol,l == 07 Po‘,l == Z (3)

2. Prediction: Take the conditional expectation on both sides of xx41 =
Az + wy,
E(Ik-&-l‘yk) = AE(.’I)k|Yk) + E(wk|Yk)

The second term on the RHS is 0 (why?). Hence
Tpprp = ATk (4)

Therefore,
Thr1 — Tppre = ATk — Trp) + wr,



which implies that

(@41 — Trrr) @r1 — Brpp) T = Alze — Bp) (@6 — Bp) T AT + wpwy

+ A(l’k — £k|k)w,{ + wk(xkz - fk\k)TAT'

Take the conditional expectation on Y; on both sides. Notice that the
conditional expectation of the last two terms on the RHS is 0 (why?).
Hence

Piije = APy AT 4 Q. (5)

. Correction: We need the following theorem:

Theorem 1. Assume that the joint pdf of x,y satisfies
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then the following equalities hold:

Cov(zly) = Sou — SaySy, Siy-

By (4) and (5), we already know that
E(zr+11Yk) = Zrg1jk, Cov(@p11]Ye) = Pryp-

Now take the conditional expectation on Y; on both sides of yx41 =
CTr1 + Vi1, We get

E(yr+1|Yk) = C2pp1s
Similar to the proof of (5), we have
Cov(ypt1|Y) = CPoipCT + R,
Cov(@rr1, Yrr1Ye) = B ((@rs1 — Zrg1je) W1 — E@is1Ye) Vi) = PesapCT.
Therefore, the joint pdf of xx11,yry1 satisfies
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Using Theorem 1, we get the correction equations:

Ert1kt1 = Eprpe + P pCT (CPrganCT + R) ™ (yks1 — C&py1)p),
(6)

Pttt = Pesipe — PoypCT (CPry1xCT + R) ' C Py (7)



Equation (3), (4), (5), (6) and (7) are called Kalman filter.
Observations:

® Pk, Piy1) do not depend on Y. Hence, they can be computed off-line.

e Define
Ky £ Pyjj—1CT (CPyjm1CT + R)™

Assume that C is invertible.

— If Pyp—1 > R, then K}, ~ C~ ! and
Epe & Bgp—1 + CHye — Clppp—1) = C 'y
If the prediction is inaccurate, then we will trust the measurement.
— If Pyp—1 < R, then K} ~ 0 and
Tk & Tp|po—1-
If the measurement is inaccurate, then we will trust the prediction.

KF can be seen as an optimal way to put weights on the current measure-
ment and the past measurements (predicted state estimate).

Drawbacks:

We still need to compute Py, which involves matrix multiplication and
inversion.

However, we can avoid computing Py, by the following theorems:

Theorem 2. Assuming that (A, C) is observable and (A, Q'/?) is controllable,
then Pyj,—1 converges to a unique value P, regardless of the initial condition X.

Denote K £ limy_,oo K = PCT(CPCT + R)~.
Theorem 3. Consider the following linear estimator using gain matriz K :
Tpg1)k = ATkiks Thr1jh+1 = Thgifk + K(Wrt1 — CTpgajn), (8)
with initial condition To—; = 0. Define
pk|k = COV(J?k — jk|k|Yk)7 [:)k+1|k = COV($k+1 — i’}c+1\k|Yk)7

then the linear estimator achieves the same asymptotic performance as the
Kalman filter, i.e.,

lim pk+1|k = P, lim Pk|k = lim Pk\k‘
k—o0 k—o0 k—o0
In practice, we can compute P (remember that P, can be computed off-

line) and K off-line and use the linear estimator (8) instead of the Kalman
filter.



